Spaces:
Sleeping
Sleeping
Milo Sobral
commited on
Commit
Β·
7d40d1a
1
Parent(s):
fcba0a9
Finished setting up the gradio demo
Browse files- .gitignore +3 -0
- portiloop/src/demo/demo.py +137 -0
- portiloop/src/demo/demo_stimulator.py +30 -0
- portiloop/src/detection.py +10 -1
- portiloop/{demo β src/hardware/demo}/acquisition_demo.py +0 -0
- portiloop/{demo β src/hardware/demo}/demo_net.py +0 -0
- portiloop/{demo β src/hardware/demo}/led_demo.py +0 -0
- portiloop/src/stimulation.py +2 -2
.gitignore
CHANGED
@@ -2,6 +2,9 @@
|
|
2 |
.vscode/
|
3 |
.idea/
|
4 |
|
|
|
|
|
|
|
5 |
# Vagrant
|
6 |
.vagrant/
|
7 |
|
|
|
2 |
.vscode/
|
3 |
.idea/
|
4 |
|
5 |
+
# Output from the demo
|
6 |
+
output.csv
|
7 |
+
|
8 |
# Vagrant
|
9 |
.vagrant/
|
10 |
|
portiloop/src/demo/demo.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
from portiloop.src.demo.demo_stimulator import DemoSleepSpindleRealTimeStimulator
|
7 |
+
from portiloop.src.detection import SleepSpindleRealTimeDetector
|
8 |
+
|
9 |
+
from portiloop.src.stimulation import UpStateDelayer
|
10 |
+
plt.switch_backend('agg')
|
11 |
+
from portiloop.src.processing import FilterPipeline
|
12 |
+
|
13 |
+
|
14 |
+
def do_treatment(csv_file, filtering, threshold, detect_channel, freq, spindle_freq, spindle_detection_mode, time_to_buffer):
|
15 |
+
|
16 |
+
# Read the csv file to a numpy array
|
17 |
+
data_whole = np.loadtxt(csv_file.name, delimiter=',')
|
18 |
+
|
19 |
+
# Get the data from the selected channel
|
20 |
+
detect_channel = int(detect_channel)
|
21 |
+
freq = int(freq)
|
22 |
+
data = data_whole[:, detect_channel - 1]
|
23 |
+
|
24 |
+
# Create the detector and the stimulator
|
25 |
+
detector = SleepSpindleRealTimeDetector(threshold=threshold, channel=1) # always 1 because we have only one channel
|
26 |
+
stimulator = DemoSleepSpindleRealTimeStimulator()
|
27 |
+
if spindle_detection_mode != 'Fast':
|
28 |
+
delayer = UpStateDelayer(freq, spindle_freq, spindle_detection_mode == 'Peak', time_to_buffer=time_to_buffer)
|
29 |
+
stimulator.add_delayer(delayer)
|
30 |
+
|
31 |
+
# Create the filtering pipeline
|
32 |
+
if filtering:
|
33 |
+
filter = FilterPipeline(nb_channels=1, sampling_rate=freq)
|
34 |
+
|
35 |
+
# Plotting variables
|
36 |
+
points = []
|
37 |
+
activations = []
|
38 |
+
delayed_activations = []
|
39 |
+
|
40 |
+
# Go through the data
|
41 |
+
for index, point in enumerate(data):
|
42 |
+
# Step the delayer if exists
|
43 |
+
if spindle_detection_mode != 'Fast':
|
44 |
+
delayed = delayer.step(point)
|
45 |
+
if delayed:
|
46 |
+
delayed_activations.append(1)
|
47 |
+
else:
|
48 |
+
delayed_activations.append(0)
|
49 |
+
|
50 |
+
# Filter the data
|
51 |
+
if filtering:
|
52 |
+
filtered_point = filter.filter(np.array([point]))
|
53 |
+
else:
|
54 |
+
filtered_point = point
|
55 |
+
|
56 |
+
filtered_point = filtered_point.tolist()
|
57 |
+
|
58 |
+
# Detect the spindles
|
59 |
+
result = detector.detect([filtered_point])
|
60 |
+
|
61 |
+
# Stimulate if necessary
|
62 |
+
stim = stimulator.stimulate(result)
|
63 |
+
if stim:
|
64 |
+
activations.append(1)
|
65 |
+
else:
|
66 |
+
activations.append(0)
|
67 |
+
|
68 |
+
# Add data to plotting buffer
|
69 |
+
points.append(filtered_point[0])
|
70 |
+
|
71 |
+
# Plot the data
|
72 |
+
if index % (10 * freq) == 0:
|
73 |
+
plt.close()
|
74 |
+
fig = plt.figure(figsize=(20, 10))
|
75 |
+
plt.clf()
|
76 |
+
plt.plot(points[-10 * freq:], label="Data")
|
77 |
+
# Draw vertical lines for activations
|
78 |
+
for index in get_activations(activations[-10 * freq:]):
|
79 |
+
plt.axvline(x=index, color='r', label="Fast Stimulation")
|
80 |
+
if spindle_detection_mode != 'Fast':
|
81 |
+
for index in get_activations(delayed_activations[-10 * freq:]):
|
82 |
+
plt.axvline(x=index, color='g', label="Delayed Stimulation")
|
83 |
+
yield fig, None
|
84 |
+
|
85 |
+
# Put all points and activations back in numpy arrays
|
86 |
+
points = np.array(points)
|
87 |
+
activations = np.array(activations)
|
88 |
+
delayed_activations = np.array(delayed_activations)
|
89 |
+
# Concatenate with the original data
|
90 |
+
data_whole = np.concatenate((data_whole, points.reshape(-1, 1), activations.reshape(-1, 1), delayed_activations.reshape(-1, 1)), axis=1)
|
91 |
+
# Output the data to a csv file
|
92 |
+
np.savetxt('output.csv', data_whole, delimiter=',')
|
93 |
+
|
94 |
+
yield None, "output.csv"
|
95 |
+
|
96 |
+
# Function to return a list of all indexes where activations have happened
|
97 |
+
def get_activations(activations):
|
98 |
+
return [i for i, x in enumerate(activations) if x == 1]
|
99 |
+
|
100 |
+
|
101 |
+
with gr.Blocks() as demo:
|
102 |
+
gr.Markdown("Enter your csv file and click **Run Inference** to get the output.")
|
103 |
+
|
104 |
+
# Row containing all inputs:
|
105 |
+
with gr.Row():
|
106 |
+
# CSV file
|
107 |
+
csv_file = gr.UploadButton(label="CSV File", file_count="single")
|
108 |
+
# Filtering (Boolean)
|
109 |
+
filtering = gr.Checkbox(label="Filtering (On/Off)", value=True)
|
110 |
+
# Threshold value
|
111 |
+
threshold = gr.Slider(0, 1, value=0.82, step=0.01, label="Threshold", interactive=True)
|
112 |
+
# Detection Channel
|
113 |
+
detect_column = gr.Dropdown(choices=["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"], value="1", label="Detection Column", interactive=True)
|
114 |
+
# Frequency
|
115 |
+
freq = gr.Dropdown(choices=["100", "200", "250", "256", "500", "512", "1000", "1024"], value="250", label="Frequency", interactive=True)
|
116 |
+
# Spindle Frequency
|
117 |
+
spindle_freq = gr.Slider(10, 16, value=12, step=1, label="Spindle Frequency", interactive=True)
|
118 |
+
# Spindle Detection Mode
|
119 |
+
spindle_detection_mode = gr.Dropdown(choices=["Fast", "Peak", "Valley"], value="Peak", label="Spindle Detection Mode", interactive=True)
|
120 |
+
# Time to buffer
|
121 |
+
time_to_buffer = gr.Slider(0, 1, value=0, step=0.01, label="Time to Buffer", interactive=True)
|
122 |
+
|
123 |
+
# Output plot
|
124 |
+
output_plot = gr.Plot()
|
125 |
+
# Output file
|
126 |
+
output_array = gr.File(label="Output CSV File")
|
127 |
+
|
128 |
+
# Row containing all buttons:
|
129 |
+
with gr.Row():
|
130 |
+
# Run inference button
|
131 |
+
run_inference = gr.Button(value="Run Inference")
|
132 |
+
# Reset button
|
133 |
+
reset = gr.Button(value="Reset", variant="secondary")
|
134 |
+
run_inference.click(fn=do_treatment, inputs=[csv_file, filtering, threshold, detect_column, freq, spindle_freq, spindle_detection_mode, time_to_buffer], outputs=[output_plot, output_array])
|
135 |
+
|
136 |
+
demo.queue()
|
137 |
+
demo.launch()
|
portiloop/src/demo/demo_stimulator.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from portiloop.src.stimulation import Stimulator
|
3 |
+
|
4 |
+
|
5 |
+
class DemoSleepSpindleRealTimeStimulator(Stimulator):
|
6 |
+
def __init__(self):
|
7 |
+
self.last_detected_ts = time.time()
|
8 |
+
self.wait_t = 0.4 # 400 ms
|
9 |
+
|
10 |
+
def stimulate(self, detection_signal):
|
11 |
+
stim = False
|
12 |
+
for sig in detection_signal:
|
13 |
+
# We detect a stimulation
|
14 |
+
if sig:
|
15 |
+
# Record time of stimulation
|
16 |
+
ts = time.time()
|
17 |
+
|
18 |
+
# Check if time since last stimulation is long enough
|
19 |
+
if ts - self.last_detected_ts > self.wait_t:
|
20 |
+
if self.delayer is not None:
|
21 |
+
# If we have a delayer, notify it
|
22 |
+
self.delayer.detected()
|
23 |
+
stim = True
|
24 |
+
|
25 |
+
self.last_detected_ts = ts
|
26 |
+
return stim
|
27 |
+
|
28 |
+
def add_delayer(self, delayer):
|
29 |
+
self.delayer = delayer
|
30 |
+
self.delayer.stimulate = lambda: True
|
portiloop/src/detection.py
CHANGED
@@ -5,6 +5,8 @@ from portiloop.src import ADS
|
|
5 |
|
6 |
if ADS:
|
7 |
from pycoral.utils import edgetpu
|
|
|
|
|
8 |
import numpy as np
|
9 |
|
10 |
|
@@ -53,7 +55,10 @@ class SleepSpindleRealTimeDetector(Detector):
|
|
53 |
|
54 |
self.interpreters = []
|
55 |
for i in range(self.num_models_parallel):
|
56 |
-
|
|
|
|
|
|
|
57 |
self.interpreters[i].allocate_tensors()
|
58 |
self.interpreter_counter = 0
|
59 |
|
@@ -76,6 +81,10 @@ class SleepSpindleRealTimeDetector(Detector):
|
|
76 |
super().__init__(threshold)
|
77 |
|
78 |
def detect(self, datapoints):
|
|
|
|
|
|
|
|
|
79 |
res = []
|
80 |
for inp in datapoints:
|
81 |
result = self.add_datapoint(inp)
|
|
|
5 |
|
6 |
if ADS:
|
7 |
from pycoral.utils import edgetpu
|
8 |
+
else:
|
9 |
+
import tensorflow as tf
|
10 |
import numpy as np
|
11 |
|
12 |
|
|
|
55 |
|
56 |
self.interpreters = []
|
57 |
for i in range(self.num_models_parallel):
|
58 |
+
if ADS:
|
59 |
+
self.interpreters.append(edgetpu.make_interpreter(model_path))
|
60 |
+
else:
|
61 |
+
self.interpreters.append(tf.lite.Interpreter(model_path=model_path))
|
62 |
self.interpreters[i].allocate_tensors()
|
63 |
self.interpreter_counter = 0
|
64 |
|
|
|
81 |
super().__init__(threshold)
|
82 |
|
83 |
def detect(self, datapoints):
|
84 |
+
"""
|
85 |
+
Takes datapoints as input and outputs a detection signal.
|
86 |
+
datapoints is a list of lists of n channels: may contain several datapoints.
|
87 |
+
"""
|
88 |
res = []
|
89 |
for inp in datapoints:
|
90 |
result = self.add_datapoint(inp)
|
portiloop/{demo β src/hardware/demo}/acquisition_demo.py
RENAMED
File without changes
|
portiloop/{demo β src/hardware/demo}/demo_net.py
RENAMED
File without changes
|
portiloop/{demo β src/hardware/demo}/led_demo.py
RENAMED
File without changes
|
portiloop/src/stimulation.py
CHANGED
@@ -142,7 +142,7 @@ class SleepSpindleRealTimeStimulator(Stimulator):
|
|
142 |
|
143 |
def add_delayer(self, delayer):
|
144 |
self.delayer = delayer
|
145 |
-
self.delayer.stimulate = lambda
|
146 |
|
147 |
# Class that delays stimulation to always stimulate peak or through
|
148 |
class UpStateDelayer:
|
@@ -182,7 +182,7 @@ class UpStateDelayer:
|
|
182 |
return False
|
183 |
elif self.state == States.DELAYING:
|
184 |
# Check if we are done delaying
|
185 |
-
if time.time() - self.time_started >= self.time_to_wait
|
186 |
# Actually stimulate the patient after the delay
|
187 |
if self.stimulate is not None:
|
188 |
self.stimulate()
|
|
|
142 |
|
143 |
def add_delayer(self, delayer):
|
144 |
self.delayer = delayer
|
145 |
+
self.delayer.stimulate = lambda: self.send_stimulation("DELAY_STIM", True)
|
146 |
|
147 |
# Class that delays stimulation to always stimulate peak or through
|
148 |
class UpStateDelayer:
|
|
|
182 |
return False
|
183 |
elif self.state == States.DELAYING:
|
184 |
# Check if we are done delaying
|
185 |
+
if time.time() - self.time_started >= self.time_to_wait:
|
186 |
# Actually stimulate the patient after the delay
|
187 |
if self.stimulate is not None:
|
188 |
self.stimulate()
|