import gradio as gr import pandas as pd import plotly.express as px def display_table(exam_type): if exam_type == "Armenian Exams": df = pd.read_csv('unified_exam_results.csv') df = df.sort_values(by='Average score', ascending=False) cols = df.columns.tolist() cols.insert(1, cols.pop(cols.index('Average score'))) df = df[cols] elif exam_type == "MMLU-Pro-Hy": df = pd.read_csv('mmlu_pro_hy_results.csv') df = df.sort_values(by='Accuracy', ascending=False) return df def create_bar_chart(exam_type, plot_column): if exam_type == "Armenian Exams": df = pd.read_csv('unified_exam_results.csv') df = df.sort_values(by='Average score', ascending=False) df = df.sort_values(by=[plot_column, 'Model'], ascending=[False, True]).reset_index(drop=True) x_col = plot_column title = f'{plot_column} per Model' if plot_column == 'Average score': range_max = 20 x_range_max = 20 else: range_max = 20 x_range_max = 20 def get_label(score): if score < 8: return "Fail" elif 8 <= score <= 18: return "Pass" else: return "Distinction" df['Test Result'] = df[plot_column].apply(get_label) if plot_column in ['Average score', 'Accuracy']: fig = px.bar(df, x=x_col, y='Model', color=x_col, color_continuous_scale='tealrose_r', labels={x_col: plot_column, 'Model': 'Model'}, title=title, orientation='h', range_color=[0, range_max]) else: color_discrete_map = { "Fail": "#d15d80", "Pass": "#edd8be", "Distinction": "#059492" } fig = px.bar(df, x=x_col, y='Model', color=df['Test Result'], color_discrete_map=color_discrete_map, labels={x_col: plot_column, 'Model': 'Model'}, title=title, orientation='h') fig.update_layout( xaxis=dict(range=[0, x_range_max]), title=dict(text=title, font=dict(size=16)), xaxis_title=dict(font=dict(size=12)), yaxis_title=dict(font=dict(size=12)), yaxis=dict(autorange="reversed") ) return fig elif exam_type == "MMLU-Pro-Hy": df = pd.read_csv('mmlu_pro_hy_results.csv') df = df.sort_values(by='Accuracy', ascending=False) x_col = 'Accuracy' title = 'Accuracy per Model (MMLU-Pro-Hy)' range_max = 1.0 x_range_max = 1.0 if plot_column != 'Accuracy': def get_label(accuracy): if accuracy < 0.5: return "Low" elif 0.5 <= accuracy <= 0.8: return "Medium" else: return "High" df['Test Result'] = df['Accuracy'].apply(get_label) fig = px.bar(df, x=x_col, y='Model', color=x_col, color_continuous_scale='tealrose_r', labels={x_col: plot_column, 'Model': 'Model'}, title=title, orientation='h', range_color=[0, range_max]) fig.update_layout( xaxis=dict(range=[0, x_range_max]), title=dict(text=title, font=dict(size=16)), xaxis_title=dict(font=dict(size=12)), yaxis_title=dict(font=dict(size=12)), yaxis=dict(autorange="reversed") ) return fig with gr.Blocks() as app: with gr.Tabs(): with gr.TabItem("Armenian Unified Exams"): table_output_armenian = gr.DataFrame(value=lambda: display_table("Armenian Exams")) plot_column_dropdown = gr.Dropdown(choices=['Average score', 'Armenian language exam score', 'Armenian history exam score', 'Mathematics exam score'], value='Average score', label='Select Column to Plot') plot_output_armenian = gr.Plot(lambda column: create_bar_chart("Armenian Exams", column), inputs=plot_column_dropdown) with gr.TabItem("MMLU-Pro-Hy"): table_output_mmlu = gr.DataFrame(value=lambda: display_table("MMLU-Pro-Hy")) plot_output_mmlu = gr.Plot(lambda: create_bar_chart("MMLU-Pro-Hy", 'Accuracy')) app.launch(share=True)