|
import gradio as gr |
|
import ipdb |
|
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import snapshot_download |
|
|
|
from src.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
TITLE, |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
ModelInfoColumn, |
|
ModelType, |
|
fields, |
|
WeightType, |
|
Precision |
|
) |
|
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_model_info_df, get_merged_df |
|
from src.submission.submit import add_new_eval |
|
from src.utils import norm_sNavie, pivot_df, get_grouped_dfs, pivot_existed_df, rename_metrics, format_df |
|
|
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grouped_dfs = get_grouped_dfs() |
|
domain_df, freq_df, term_length_df, variate_type_df, overall_df = grouped_dfs['domain'], grouped_dfs['frequency'], grouped_dfs['term_length'], grouped_dfs['univariate'], grouped_dfs['overall'] |
|
overall_df = rename_metrics(overall_df) |
|
overall_df = format_df(overall_df) |
|
overall_df = overall_df.sort_values(by=['Rank']) |
|
domain_df = pivot_existed_df(domain_df, tab_name='domain') |
|
print(f'Domain dataframe is {domain_df}') |
|
freq_df = pivot_existed_df(freq_df, tab_name='frequency') |
|
print(f'Freq dataframe is {freq_df}') |
|
term_length_df = pivot_existed_df(term_length_df, tab_name='term_length') |
|
print(f'Term length dataframe is {term_length_df}') |
|
variate_type_df = pivot_existed_df(variate_type_df, tab_name='univariate') |
|
print(f'Variate type dataframe is {variate_type_df}') |
|
model_info_df = get_model_info_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_leaderboard(ori_dataframe, model_info_df, sort_val: str|None = None): |
|
if ori_dataframe is None or ori_dataframe.empty: |
|
raise ValueError("Leaderboard DataFrame is empty or None.") |
|
model_info_col_list = [c.name for c in fields(ModelInfoColumn) if c.displayed_by_default if c.name not in ['#Params (B)', 'available_on_hub', 'hub', 'Model sha','Hub License']] |
|
col2type_dict = {c.name: c.type for c in fields(ModelInfoColumn)} |
|
default_selection_list = list(ori_dataframe.columns) + model_info_col_list |
|
|
|
|
|
|
|
merged_df = get_merged_df(ori_dataframe, model_info_df) |
|
new_cols = ['T'] + [col for col in merged_df.columns if col != 'T'] |
|
merged_df = merged_df[new_cols] |
|
if sort_val: |
|
if sort_val in merged_df.columns: |
|
merged_df = merged_df.sort_values(by=[sort_val]) |
|
else: |
|
print(f'Warning: cannot sort by {sort_val}') |
|
print('Merged df: ', merged_df) |
|
|
|
datatype_list = [col2type_dict[col] if col in col2type_dict else 'number' for col in merged_df.columns] |
|
|
|
|
|
|
|
return Leaderboard( |
|
value=merged_df, |
|
datatype=datatype_list, |
|
select_columns=SelectColumns( |
|
default_selection=default_selection_list, |
|
|
|
|
|
|
|
|
|
cant_deselect=[c.name for c in fields(ModelInfoColumn) if c.never_hidden], |
|
label="Select Columns to Display:", |
|
|
|
), |
|
hide_columns=[c.name for c in fields(ModelInfoColumn) if c.hidden], |
|
search_columns=['model'], |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
filter_columns=[ |
|
ColumnFilter(ModelInfoColumn.model_type.name, type="checkboxgroup", label="Model types"), |
|
], |
|
|
|
column_widths=[40, 150] + [180 for _ in range(len(merged_df.columns)-2)], |
|
interactive=False, |
|
) |
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem('π
Overall', elem_id="llm-benchmark-tab-table", id=5): |
|
leaderboard = init_leaderboard(overall_df, model_info_df, sort_val='Rank') |
|
print(f'FINAL Overall LEADERBOARD {overall_df}') |
|
with gr.TabItem("π
By Domain", elem_id="llm-benchmark-tab-table", id=0): |
|
leaderboard = init_leaderboard(domain_df, model_info_df) |
|
print(f"FINAL Domain LEADERBOARD 1 {domain_df}") |
|
|
|
with gr.TabItem("π
By Frequency", elem_id="llm-benchmark-tab-table", id=1): |
|
leaderboard = init_leaderboard(freq_df, model_info_df) |
|
print(f"FINAL Frequency LEADERBOARD 1 {freq_df}") |
|
|
|
with gr.TabItem("π
By Term Length", elem_id="llm-benchmark-tab-table", id=2): |
|
leaderboard = init_leaderboard(term_length_df, model_info_df) |
|
print(f"FINAL term length LEADERBOARD 1 {term_length_df}") |
|
|
|
with gr.TabItem("π
By Variate Type", elem_id="llm-benchmark-tab-table", id=3): |
|
leaderboard = init_leaderboard(variate_type_df, model_info_df) |
|
print(f"FINAL LEADERBOARD 1 {variate_type_df}") |
|
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
scheduler = BackgroundScheduler() |
|
|
|
scheduler.start() |
|
demo.queue(default_concurrency_limit=40).launch() |