Spaces:
Runtime error
Runtime error
Update evaluate.py
Browse files- evaluate.py +29 -11
evaluate.py
CHANGED
@@ -1,19 +1,37 @@
|
|
|
|
|
|
1 |
from datasets import load_dataset
|
2 |
-
from
|
|
|
3 |
|
4 |
def evaluate_model(model_name):
|
5 |
try:
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
emb2 = model.encode(row["output"], convert_to_tensor=True)
|
13 |
-
sim_score = float(util.cos_sim(emb1, emb2)[0])
|
14 |
-
scores.append(sim_score)
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
except Exception as e:
|
18 |
print(f"Evaluation failed: {e}")
|
19 |
-
return None
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModel
|
2 |
+
import torch
|
3 |
from datasets import load_dataset
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import numpy as np
|
6 |
|
7 |
def evaluate_model(model_name):
|
8 |
try:
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModel.from_pretrained(model_name)
|
11 |
+
model.eval()
|
12 |
+
model.to("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
except:
|
14 |
+
return None
|
15 |
+
|
16 |
+
dataset = load_dataset("arshiaafshani/persian-natural-fluently", split="train[:10]")
|
17 |
+
embeddings1, embeddings2 = [], []
|
18 |
+
try:
|
19 |
+
for item in dataset:
|
20 |
+
inputs1 = tokenizer(item["instruction"], return_tensors="pt", truncation=True, padding=True)
|
21 |
+
inputs2 = tokenizer(item["output"], return_tensors="pt", truncation=True, padding=True)
|
22 |
|
23 |
+
with torch.no_grad():
|
24 |
+
embed1 = model(**inputs1).last_hidden_state[:, 0, :]
|
25 |
+
embed2 = model(**inputs2).last_hidden_state[:, 0, :]
|
|
|
|
|
|
|
26 |
|
27 |
+
embeddings1.append(embed1.squeeze().numpy())
|
28 |
+
embeddings2.append(embed2.squeeze().numpy())
|
29 |
+
|
30 |
+
sims = [cosine_similarity([e1], [e2])[0][0] for e1, e2 in zip(embeddings1, embeddings2)]
|
31 |
+
labels = [item["similarity_score"] for item in dataset]
|
32 |
+
|
33 |
+
corr = np.corrcoef(sims, labels)[0, 1]
|
34 |
+
return float(corr)
|
35 |
except Exception as e:
|
36 |
print(f"Evaluation failed: {e}")
|
37 |
+
return None
|