Commit
·
254bcd7
1
Parent(s):
1bc77fb
update
Browse files
app.py
CHANGED
@@ -2,70 +2,105 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
|
5 |
-
# Sample data
|
6 |
-
# df = pd.read_csv('your_leaderboard_data.csv')
|
7 |
-
|
8 |
-
# For demonstration, I'll create sample data matching your structure
|
9 |
data = {
|
10 |
-
'Model': [
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
}
|
21 |
|
|
|
22 |
df = pd.DataFrame(data)
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
"""Filter and search models based on user inputs"""
|
26 |
filtered_df = df.copy()
|
27 |
|
28 |
# Apply search filter
|
29 |
if search_query:
|
30 |
-
mask = filtered_df['Model'].str.contains(search_query, case=False, na=False)
|
31 |
filtered_df = filtered_df[mask]
|
32 |
|
33 |
-
# Apply domain filter
|
34 |
-
if domain_filter:
|
35 |
-
if domain_filter == "Medical":
|
36 |
-
filtered_df = filtered_df[filtered_df['Domain'] == 'Medical']
|
37 |
-
elif domain_filter == "General":
|
38 |
-
filtered_df = filtered_df[filtered_df['Domain'] == 'General']
|
39 |
-
|
40 |
# Apply size range filter
|
41 |
if size_ranges and len(size_ranges) > 0:
|
42 |
filtered_df = filtered_df[filtered_df['Size_Category'].isin(size_ranges)]
|
43 |
|
44 |
-
#
|
45 |
-
if
|
46 |
-
|
47 |
-
filtered_df = filtered_df[filtered_df['Accessibility'] == 'Open Source']
|
48 |
-
elif accessibility_filter == "Proprietary":
|
49 |
-
filtered_df = filtered_df[filtered_df['Accessibility'] == 'Proprietary']
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
# Format the dataframe for display
|
55 |
-
display_df = filtered_df[['Model', 'Domain', 'License', 'Size (B)',
|
56 |
-
'Average Performance', 'ADE-Identification',
|
57 |
-
'BrainMRI-AIS', 'Brateca-Hospitalization']]
|
58 |
|
59 |
# Round numerical values for better display
|
60 |
-
for col in ['
|
61 |
-
display_df[col] = display_df[col].round(
|
62 |
|
63 |
return display_df
|
64 |
|
65 |
# Create the Gradio interface
|
66 |
with gr.Blocks(title="FACT Leaderboard", theme=gr.themes.Base()) as app:
|
67 |
gr.Markdown("# 🏆 FACT Leaderboard")
|
68 |
-
gr.Markdown("###
|
69 |
|
70 |
with gr.Row():
|
71 |
with gr.Column(scale=1):
|
@@ -76,75 +111,71 @@ with gr.Blocks(title="FACT Leaderboard", theme=gr.themes.Base()) as app:
|
|
76 |
value=""
|
77 |
)
|
78 |
|
79 |
-
# Domain filter
|
80 |
-
gr.Markdown("**Filter Model: Domain**")
|
81 |
-
domain_radio = gr.Radio(
|
82 |
-
choices=["All", "General", "Medical"],
|
83 |
-
value="All",
|
84 |
-
label="",
|
85 |
-
elem_classes="domain-filter"
|
86 |
-
)
|
87 |
-
|
88 |
# Size range filter
|
89 |
-
gr.Markdown("**Filter Model
|
90 |
size_checkboxes = gr.CheckboxGroup(
|
91 |
-
choices=["0-
|
92 |
-
value=["0-
|
93 |
label="",
|
94 |
elem_classes="size-filter"
|
95 |
)
|
96 |
|
97 |
-
#
|
98 |
-
gr.Markdown("**
|
99 |
-
|
100 |
-
choices=["
|
101 |
-
value="
|
102 |
label="",
|
103 |
-
elem_classes="
|
104 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
with gr.Column(scale=3):
|
107 |
# Results table
|
108 |
results_table = gr.Dataframe(
|
109 |
-
value=filter_and_search_models("",
|
110 |
-
headers=["Model
|
111 |
-
"
|
112 |
-
|
113 |
-
datatype=["str", "str", "str", "number", "number", "number", "number", "number"],
|
114 |
elem_id="leaderboard-table",
|
115 |
interactive=False,
|
116 |
wrap=True
|
117 |
)
|
|
|
|
|
|
|
118 |
|
119 |
# Update table when filters change
|
120 |
-
def update_table(search,
|
121 |
-
|
122 |
-
|
123 |
-
return
|
124 |
|
125 |
# Connect all inputs to the update function
|
126 |
search_box.change(
|
127 |
fn=update_table,
|
128 |
-
inputs=[search_box,
|
129 |
-
outputs=results_table
|
130 |
-
)
|
131 |
-
|
132 |
-
domain_radio.change(
|
133 |
-
fn=update_table,
|
134 |
-
inputs=[search_box, domain_radio, size_checkboxes, accessibility_radio],
|
135 |
-
outputs=results_table
|
136 |
)
|
137 |
|
138 |
size_checkboxes.change(
|
139 |
fn=update_table,
|
140 |
-
inputs=[search_box,
|
141 |
-
outputs=results_table
|
142 |
)
|
143 |
|
144 |
-
|
145 |
fn=update_table,
|
146 |
-
inputs=[search_box,
|
147 |
-
outputs=results_table
|
148 |
)
|
149 |
|
150 |
# Add custom CSS for better styling
|
@@ -153,24 +184,50 @@ with gr.Blocks(title="FACT Leaderboard", theme=gr.themes.Base()) as app:
|
|
153 |
font-size: 14px;
|
154 |
}
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
display: flex;
|
160 |
align-items: center;
|
161 |
margin: 5px 0;
|
162 |
}
|
163 |
|
164 |
-
.
|
165 |
-
.accessibility-filter input[type="radio"] {
|
166 |
margin-right: 8px;
|
167 |
}
|
168 |
|
169 |
-
.
|
170 |
-
margin-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
}
|
172 |
"""
|
173 |
|
|
|
|
|
|
|
|
|
174 |
# Launch the app
|
175 |
if __name__ == "__main__":
|
176 |
app.launch(share=True)
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
|
5 |
+
# Sample data based on your CSV structure
|
|
|
|
|
|
|
6 |
data = {
|
7 |
+
'Model Name': [
|
8 |
+
'deepseek-ai/DeepSeek-R1-Distill-Qwen-14B',
|
9 |
+
'VIDraft/Gemma-3-R1984-27B',
|
10 |
+
'meta-llama/Llama-3.3-70B-Instruct',
|
11 |
+
'Qwen/Qwen3-30B-A3B',
|
12 |
+
'Qwen/Qwen3-4B',
|
13 |
+
'Qwen/Qwen3-32B',
|
14 |
+
'deepseek-ai/DeepSeek-R1-Distill-Llama-8B',
|
15 |
+
'Qwen/Qwen3-8B',
|
16 |
+
'Qwen/Qwen3-14B',
|
17 |
+
'google/gemma-3-27b-it',
|
18 |
+
'Qwen/Qwen2.5-VL-32B-Instruct',
|
19 |
+
'meta-llama/Llama-3.1-70B-Instruct',
|
20 |
+
'google/gemma-3-12b-it',
|
21 |
+
'google/gemma-3-4b-it',
|
22 |
+
'Qwen/Qwen3-1.7B'
|
23 |
+
],
|
24 |
+
'Separate Grounding Score': [
|
25 |
+
0.817797, 0.93617, 0.842553, 0.812766, 0.770213, 0.740426,
|
26 |
+
0.766949, 0.748936, 0.778723, 0.936, 0.621277, 0.855932,
|
27 |
+
0.944, 0.9, 0.702128
|
28 |
+
],
|
29 |
+
'Separate Quality Score': [
|
30 |
+
0.542373, 0.459574, 0.510638, 0.540426, 0.540426, 0.553191,
|
31 |
+
0.516949, 0.523404, 0.502128, 0.391, 0.570213, 0.389831,
|
32 |
+
0.343, 0.33, 0.451064
|
33 |
+
],
|
34 |
+
'Combined Score': [
|
35 |
+
0.457627, 0.434043, 0.425532, 0.425532, 0.425532, 0.417021,
|
36 |
+
0.40678, 0.4, 0.382979, 0.378, 0.357447, 0.334746,
|
37 |
+
0.313, 0.3, 0.297872
|
38 |
+
]
|
39 |
}
|
40 |
|
41 |
+
# Create DataFrame
|
42 |
df = pd.DataFrame(data)
|
43 |
|
44 |
+
# Extract size from model name for filtering
|
45 |
+
def extract_size(model_name):
|
46 |
+
"""Extract size from model name (e.g., '14B' -> 14)"""
|
47 |
+
import re
|
48 |
+
# Look for patterns like 14B, 1.7B, 70B, etc.
|
49 |
+
match = re.search(r'(\d+\.?\d*)B', model_name)
|
50 |
+
if match:
|
51 |
+
return float(match.group(1))
|
52 |
+
return 0
|
53 |
+
|
54 |
+
df['Size'] = df['Model Name'].apply(extract_size)
|
55 |
+
|
56 |
+
# Add size category for filtering
|
57 |
+
def get_size_category(size):
|
58 |
+
if size <= 5:
|
59 |
+
return "0-5B"
|
60 |
+
elif size <= 10:
|
61 |
+
return "5-10B"
|
62 |
+
elif size <= 20:
|
63 |
+
return "10-20B"
|
64 |
+
elif size <= 40:
|
65 |
+
return "20-40B"
|
66 |
+
elif size <= 80:
|
67 |
+
return "40-80B"
|
68 |
+
else:
|
69 |
+
return ">80B"
|
70 |
+
|
71 |
+
df['Size_Category'] = df['Size'].apply(get_size_category)
|
72 |
+
|
73 |
+
def filter_and_search_models(search_query, size_ranges, sort_by):
|
74 |
"""Filter and search models based on user inputs"""
|
75 |
filtered_df = df.copy()
|
76 |
|
77 |
# Apply search filter
|
78 |
if search_query:
|
79 |
+
mask = filtered_df['Model Name'].str.contains(search_query, case=False, na=False)
|
80 |
filtered_df = filtered_df[mask]
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
# Apply size range filter
|
83 |
if size_ranges and len(size_ranges) > 0:
|
84 |
filtered_df = filtered_df[filtered_df['Size_Category'].isin(size_ranges)]
|
85 |
|
86 |
+
# Sort by selected metric
|
87 |
+
if sort_by in filtered_df.columns:
|
88 |
+
filtered_df = filtered_df.sort_values(sort_by, ascending=False)
|
|
|
|
|
|
|
89 |
|
90 |
+
# Select only the columns to display
|
91 |
+
display_df = filtered_df[['Model Name', 'Separate Grounding Score',
|
92 |
+
'Separate Quality Score', 'Combined Score']]
|
|
|
|
|
|
|
|
|
93 |
|
94 |
# Round numerical values for better display
|
95 |
+
for col in ['Separate Grounding Score', 'Separate Quality Score', 'Combined Score']:
|
96 |
+
display_df.loc[:, col] = display_df[col].round(6)
|
97 |
|
98 |
return display_df
|
99 |
|
100 |
# Create the Gradio interface
|
101 |
with gr.Blocks(title="FACT Leaderboard", theme=gr.themes.Base()) as app:
|
102 |
gr.Markdown("# 🏆 FACT Leaderboard")
|
103 |
+
gr.Markdown("### Benchmark for evaluating factuality in language models")
|
104 |
|
105 |
with gr.Row():
|
106 |
with gr.Column(scale=1):
|
|
|
111 |
value=""
|
112 |
)
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
# Size range filter
|
115 |
+
gr.Markdown("**Filter by Model Size**")
|
116 |
size_checkboxes = gr.CheckboxGroup(
|
117 |
+
choices=["0-5B", "5-10B", "10-20B", "20-40B", "40-80B", ">80B"],
|
118 |
+
value=["0-5B", "5-10B", "10-20B", "20-40B", "40-80B", ">80B"],
|
119 |
label="",
|
120 |
elem_classes="size-filter"
|
121 |
)
|
122 |
|
123 |
+
# Sort by dropdown
|
124 |
+
gr.Markdown("**Sort by Metric**")
|
125 |
+
sort_dropdown = gr.Dropdown(
|
126 |
+
choices=["Combined Score", "Separate Grounding Score", "Separate Quality Score"],
|
127 |
+
value="Combined Score",
|
128 |
label="",
|
129 |
+
elem_classes="sort-dropdown"
|
130 |
)
|
131 |
+
|
132 |
+
# Add legend/explanation
|
133 |
+
gr.Markdown("---")
|
134 |
+
gr.Markdown("**Metric Explanations:**")
|
135 |
+
gr.Markdown("""
|
136 |
+
- **Grounding Score**: Measures factual accuracy
|
137 |
+
- **Quality Score**: Measures response quality
|
138 |
+
- **Combined Score**: Overall performance metric
|
139 |
+
""")
|
140 |
|
141 |
with gr.Column(scale=3):
|
142 |
# Results table
|
143 |
results_table = gr.Dataframe(
|
144 |
+
value=filter_and_search_models("", ["0-5B", "5-10B", "10-20B", "20-40B", "40-80B", ">80B"], "Combined Score"),
|
145 |
+
headers=["Model Name", "Separate Grounding Score",
|
146 |
+
"Separate Quality Score", "Combined Score"],
|
147 |
+
datatype=["str", "number", "number", "number"],
|
|
|
148 |
elem_id="leaderboard-table",
|
149 |
interactive=False,
|
150 |
wrap=True
|
151 |
)
|
152 |
+
|
153 |
+
# Add statistics
|
154 |
+
total_models = gr.Markdown(f"**Total Models: {len(df)}**")
|
155 |
|
156 |
# Update table when filters change
|
157 |
+
def update_table(search, sizes, sort_by):
|
158 |
+
filtered_df = filter_and_search_models(search, sizes, sort_by)
|
159 |
+
model_count = f"**Total Models: {len(filtered_df)}**"
|
160 |
+
return filtered_df, model_count
|
161 |
|
162 |
# Connect all inputs to the update function
|
163 |
search_box.change(
|
164 |
fn=update_table,
|
165 |
+
inputs=[search_box, size_checkboxes, sort_dropdown],
|
166 |
+
outputs=[results_table, total_models]
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
)
|
168 |
|
169 |
size_checkboxes.change(
|
170 |
fn=update_table,
|
171 |
+
inputs=[search_box, size_checkboxes, sort_dropdown],
|
172 |
+
outputs=[results_table, total_models]
|
173 |
)
|
174 |
|
175 |
+
sort_dropdown.change(
|
176 |
fn=update_table,
|
177 |
+
inputs=[search_box, size_checkboxes, sort_dropdown],
|
178 |
+
outputs=[results_table, total_models]
|
179 |
)
|
180 |
|
181 |
# Add custom CSS for better styling
|
|
|
184 |
font-size: 14px;
|
185 |
}
|
186 |
|
187 |
+
#leaderboard-table td:first-child {
|
188 |
+
font-weight: 500;
|
189 |
+
}
|
190 |
+
|
191 |
+
#leaderboard-table td:not(:first-child) {
|
192 |
+
text-align: center;
|
193 |
+
}
|
194 |
+
|
195 |
+
.size-filter label {
|
196 |
display: flex;
|
197 |
align-items: center;
|
198 |
margin: 5px 0;
|
199 |
}
|
200 |
|
201 |
+
.size-filter input[type="checkbox"] {
|
|
|
202 |
margin-right: 8px;
|
203 |
}
|
204 |
|
205 |
+
.sort-dropdown {
|
206 |
+
margin-top: 10px;
|
207 |
+
}
|
208 |
+
|
209 |
+
/* Highlight rows based on model family */
|
210 |
+
#leaderboard-table tr:has(td:contains("meta-llama")) {
|
211 |
+
background-color: #fffbf0;
|
212 |
+
}
|
213 |
+
|
214 |
+
#leaderboard-table tr:has(td:contains("deepseek")) {
|
215 |
+
background-color: #f0f8ff;
|
216 |
+
}
|
217 |
+
|
218 |
+
#leaderboard-table tr:has(td:contains("Qwen")) {
|
219 |
+
background-color: #f0fff0;
|
220 |
+
}
|
221 |
+
|
222 |
+
#leaderboard-table tr:has(td:contains("google")) {
|
223 |
+
background-color: #fff0f5;
|
224 |
}
|
225 |
"""
|
226 |
|
227 |
+
# To load from CSV file, replace the sample data with:
|
228 |
+
# df = pd.read_csv('your_fact_leaderboard.csv')
|
229 |
+
# Then add the Size extraction and Size_Category as shown above
|
230 |
+
|
231 |
# Launch the app
|
232 |
if __name__ == "__main__":
|
233 |
app.launch(share=True)
|