Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
3 |
-
import torch
|
4 |
-
import soundfile as sf
|
5 |
-
|
6 |
-
model_name = "facebook/musicgen-small"
|
7 |
-
config = AutoConfig.from_pretrained(model_name)
|
8 |
-
|
9 |
-
if not hasattr(config, 'dropout'):
|
10 |
-
config.dropout = 0.1
|
11 |
-
if not hasattr(config, 'layerdrop'):
|
12 |
-
config.layerdrop = 0.1
|
13 |
-
if not hasattr(config, 'max_position_embeddings'):
|
14 |
-
config.max_position_embeddings = 2048
|
15 |
-
if not hasattr(config, 'num_attention_heads'):
|
16 |
-
config.num_attention_heads = 16
|
17 |
-
if not hasattr(config, 'num_hidden_layers'):
|
18 |
-
config.num_hidden_layers = 24
|
19 |
-
if not hasattr(config, 'scale_embedding'):
|
20 |
-
config.scale_embedding = False
|
21 |
-
if not hasattr(config, 'hidden_size'):
|
22 |
-
config.hidden_size = 1024
|
23 |
-
if not hasattr(config, 'num_codebooks'):
|
24 |
-
config.num_codebooks = 4
|
25 |
-
|
26 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
27 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
-
|
29 |
-
def text_to_audio(prompt):
|
30 |
-
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
31 |
-
|
32 |
-
with torch.no_grad():
|
33 |
-
output = model.generate(input_ids)
|
34 |
-
|
35 |
-
audio_data = output[0].cpu().numpy()
|
36 |
-
audio_file = "generated_audio.wav"
|
37 |
-
sf.write(audio_file, audio_data, 22050)
|
38 |
-
|
39 |
-
return audio_file
|
40 |
-
|
41 |
-
gr.Interface(fn=text_to_audio, inputs="text", outputs="audio").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|