Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
from transformers import pipeline
|
4 |
-
from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
5 |
|
6 |
-
|
7 |
-
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
def generate(description):
|
12 |
-
audio = processor(text=description, padding=True, return_tensors="pt")
|
13 |
-
audio_values = model.generate(**audio, max_new_tokens=256)
|
14 |
-
sampling_rate = model.config.audio_encoder.sampling_rate
|
15 |
-
return scipy.io.wavfile.write("musicgen_out.wav", rate=sampling_rate, data=audio_values[0, 0].numpy())
|
16 |
-
|
17 |
-
demo = gr.Interface(
|
18 |
-
fn=generate,
|
19 |
-
inputs=gr.Textbox(label="Enter Text to Convert to Audio"),
|
20 |
-
outputs=gr.Audio(label="Generated Audio"),
|
21 |
-
live=True
|
22 |
-
)
|
23 |
|
24 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from diffusers import DiffusionPipeline
|
|
|
|
|
3 |
|
4 |
+
model_name = "facebook/musicgen-small"
|
5 |
+
pipe = DiffusionPipeline.from_pretrained(model_name)
|
6 |
|
7 |
+
def generate(prompt):
|
8 |
+
return audio = pipe(prompt)
|
9 |
|
10 |
+
demo = gr.Interface(fn = generate, inputs="text", outputs=audio.save("output_music.wav"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
demo.launch()
|