File size: 1,272 Bytes
5e2592a
b2f4955
3bb59f9
 
b43e4d4
3bb59f9
b2f4955
 
 
 
c6869ea
 
a1340c4
f99d148
 
ed02bf5
f99d148
ed02bf5
 
 
 
 
 
b2f4955
 
3bb59f9
 
 
 
b2f4955
 
 
 
3bb59f9
b2f4955
 
 
 
3bb59f9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gradio as gr
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import torch
import soundfile as sf

model_name = "facebook/musicgen-small"
config = AutoConfig.from_pretrained(model_name)

if not hasattr(config, 'dropout'):
    config.dropout = 0.1 
if not hasattr(config, 'layerdrop'):
    config.layerdrop = 0.1
if not hasattr(config, 'max_position_embeddings'):
    config.max_position_embeddings = 2048 
if not hasattr(config, 'num_attention_heads'):
    config.num_attention_heads = 16 
if not hasattr(config, 'num_hidden_layers'):
    config.num_hidden_layers = 24
if not hasattr(config, 'num_hidden_layers'):
    config.num_hidden_layers = 24
if not hasattr(config, 'hidden_size'):
    config.hidden_size = 1024
    

model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
tokenizer = AutoTokenizer.from_pretrained(model_name)

def text_to_audio(prompt):
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids

    with torch.no_grad(): 
        output = model.generate(input_ids)
        
    audio_data = output[0].cpu().numpy()
    audio_file = "generated_audio.wav"
    sf.write(audio_file, audio_data, 22050)

    return audio_file

gr.Interface(fn=text_to_audio, inputs="text", outputs="audio").launch()