import gradio as gr from gradio_pdf import PDF from qdrant_client import models, QdrantClient from sentence_transformers import SentenceTransformer from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from ctransformers import AutoModelForCausalLM # Load the embedding model encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1') print("Embedding model loaded...") # Load the LLM callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) llm = AutoModelForCausalLM.from_pretrained( "TheBloke/Llama-2-7B-Chat-GGUF", model_file="llama-2-7b-chat.Q3_K_S.gguf", model_type="llama", temperature=0.2, repetition_penalty=1.5, max_new_tokens=300, ) print("LLM loaded...") def get_chunks(text): text_splitter = RecursiveCharacterTextSplitter( chunk_size=250, chunk_overlap=50, length_function=len, ) return text_splitter.split_text(text) def setup_database(files): all_chunks = [] for file in files: reader = PdfReader(file) text = "".join(page.extract_text() for page in reader.pages) chunks = get_chunks(text) all_chunks.extend(chunks) client = QdrantClient(path="./db") client.recreate_collection( collection_name="my_facts", vectors_config=models.VectorParams( size=encoder.get_sentence_embedding_dimension(), distance=models.Distance.COSINE, ), ) records = [ models.Record( id=idx, vector=encoder.encode(chunk).tolist(), payload={f"chunk_{idx}": chunk} ) for idx, chunk in enumerate(all_chunks) ] client.upload_records( collection_name="my_facts", records=records, ) def answer_question(question): client = QdrantClient(path="./db") hits = client.search( collection_name="my_facts", query_vector=encoder.encode(question).tolist(), limit=3 ) context = " ".join(hit.payload[f"chunk_{hit.id}"] for hit in hits) system_prompt = """You are a helpful co-worker, you will use the provided context to answer user questions. Read the given context before answering questions and think step by step. If you cannot answer a user question based on the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question.""" B_INST, E_INST = "[INST]", "[/INST]" B_SYS, E_SYS = "<>\n", "\n<>\n\n" instruction = f"Context: {context}\nUser: {question}" prompt_template = f"{B_INST}{B_SYS}{system_prompt}{E_SYS}{instruction}{E_INST}" response = llm(prompt_template) return response def chat(messages, files): if files: setup_database(files) if messages: question = messages[-1]["text"] answer = answer_question(question) messages.append({"text": answer, "is_user": False}) return messages interface = gr.Interface( fn=chat, inputs=[ gr.Chatbot(label="Chat"), gr.File(label="Upload PDFs", file_count="multiple") ], outputs=gr.Chatbot(label="Chat"), title="Q&A with PDFs πŸ‘©πŸ»β€πŸ’»πŸ““βœπŸ»πŸ’‘", description="This app facilitates a conversation with PDFs uploadedπŸ’‘", theme="soft", share=True, live=True, ) interface.launch()