Update app.py
Browse files
app.py
CHANGED
@@ -96,34 +96,35 @@ def analyze(text):
|
|
96 |
|
97 |
# Tokenize
|
98 |
inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt')
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
# Get the sentiment values
|
101 |
positive = sentiment_values['positive']
|
102 |
neutral = sentiment_values['neutral']
|
103 |
negative = sentiment_values['negative']
|
|
|
104 |
# Convert sentiment values to tensors
|
105 |
inputs['positive'] = torch.tensor(positive).unsqueeze(0)
|
106 |
inputs['neutral'] = torch.tensor(neutral).unsqueeze(0)
|
107 |
inputs['negative'] = torch.tensor(negative).unsqueeze(0)
|
108 |
|
109 |
# Get the sentiment model outputs
|
110 |
-
|
111 |
-
|
112 |
|
113 |
# Calculate probabilities using softmax
|
114 |
-
|
115 |
-
|
116 |
-
# Get the subjectivity model outputs
|
117 |
-
outputs2 = model_without_sentiment(**inputs)
|
118 |
-
logits2 = outputs2.get('logits')
|
119 |
-
# Calculate probabilities using softmax
|
120 |
-
p2 = torch.nn.functional.softmax(logits2, dim=1)[0]
|
121 |
|
122 |
# Format the output
|
123 |
return {
|
124 |
'Positive': f"{positive:.2%}", 'Neutral': f"{neutral:.2%}", 'Negative': f"{negative:.2%}",
|
125 |
-
'Sent-Subj OBJ': f"{
|
126 |
-
'TextOnly OBJ': f"{
|
127 |
}
|
128 |
|
129 |
# Update the Gradio interface
|
|
|
96 |
|
97 |
# Tokenize
|
98 |
inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt')
|
99 |
+
|
100 |
+
# Get the subjectivity model outputs
|
101 |
+
outputs_base = model_without_sentiment(**inputs)
|
102 |
+
logits_base = outputs_base.get('logits')
|
103 |
+
# Calculate probabilities using softmax
|
104 |
+
prob_base = torch.nn.functional.softmax(logits_base, dim=1)[0]
|
105 |
|
106 |
# Get the sentiment values
|
107 |
positive = sentiment_values['positive']
|
108 |
neutral = sentiment_values['neutral']
|
109 |
negative = sentiment_values['negative']
|
110 |
+
|
111 |
# Convert sentiment values to tensors
|
112 |
inputs['positive'] = torch.tensor(positive).unsqueeze(0)
|
113 |
inputs['neutral'] = torch.tensor(neutral).unsqueeze(0)
|
114 |
inputs['negative'] = torch.tensor(negative).unsqueeze(0)
|
115 |
|
116 |
# Get the sentiment model outputs
|
117 |
+
outputs_sentiment = model_with_sentiment(**inputs)
|
118 |
+
logits_sentiment = outputs_sentiment.get('logits')
|
119 |
|
120 |
# Calculate probabilities using softmax
|
121 |
+
prob_sentiment = torch.nn.functional.softmax(logits_sentiment, dim=1)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
# Format the output
|
124 |
return {
|
125 |
'Positive': f"{positive:.2%}", 'Neutral': f"{neutral:.2%}", 'Negative': f"{negative:.2%}",
|
126 |
+
'Sent-Subj OBJ': f"{prob_sentiment[0]:.2%}", 'Sent-Subj SUBJ': f"{prob_sentiment[1]:.2%}",
|
127 |
+
'TextOnly OBJ': f"{prob_base[0]:.2%}", 'TextOnly SUBJ': f"{prob_base[1]:.2%}"
|
128 |
}
|
129 |
|
130 |
# Update the Gradio interface
|