MateuszLis commited on
Commit
6e8bb6d
·
verified ·
1 Parent(s): 1d00040

Update saliency_gradio.py

Browse files
Files changed (1) hide show
  1. saliency_gradio.py +100 -8
saliency_gradio.py CHANGED
@@ -1,9 +1,101 @@
 
 
 
 
1
  import gradio as gr
2
- from gradio_image_prompter import ImagePrompter
3
-
4
- demo = gr.Interface(
5
- lambda prompts: (prompts["image"], prompts["points"]),
6
- ImagePrompter(show_label=False),
7
- [gr.Image(show_label=False), gr.Dataframe(label="Points")],
8
- )
9
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import numpy as np
3
+ import tensorflow as tf
4
+ from huggingface_hub import snapshot_download, from_pretrained_keras
5
  import gradio as gr
6
+
7
+ # Load the model
8
+ model = from_pretrained_keras("alexanderkroner/MSI-Net")
9
+ hf_dir = snapshot_download(repo_id="alexanderkroner/MSI-Net")
10
+
11
+ def get_target_shape(original_shape):
12
+ original_aspect_ratio = original_shape[0] / original_shape[1]
13
+ square_mode = abs(original_aspect_ratio - 1.0)
14
+ landscape_mode = abs(original_aspect_ratio - 240 / 320)
15
+ portrait_mode = abs(original_aspect_ratio - 320 / 240)
16
+ best_mode = min(square_mode, landscape_mode, portrait_mode)
17
+ if best_mode == square_mode:
18
+ return (320, 320)
19
+ elif best_mode == landscape_mode:
20
+ return (240, 320)
21
+ else:
22
+ return (320, 240)
23
+
24
+ def preprocess_input(input_image, target_shape):
25
+ input_tensor = tf.expand_dims(input_image, axis=0)
26
+ input_tensor = tf.image.resize(input_tensor, target_shape, preserve_aspect_ratio=True)
27
+ vertical_padding = target_shape[0] - input_tensor.shape[1]
28
+ horizontal_padding = target_shape[1] - input_tensor.shape[2]
29
+ vertical_padding_1 = vertical_padding // 2
30
+ vertical_padding_2 = vertical_padding - vertical_padding_1
31
+ horizontal_padding_1 = horizontal_padding // 2
32
+ horizontal_padding_2 = horizontal_padding - horizontal_padding_1
33
+ input_tensor = tf.pad(
34
+ input_tensor,
35
+ [
36
+ [0, 0],
37
+ [vertical_padding_1, vertical_padding_2],
38
+ [horizontal_padding_1, horizontal_padding_2],
39
+ [0, 0],
40
+ ],
41
+ )
42
+ return input_tensor, [vertical_padding_1, vertical_padding_2], [horizontal_padding_1, horizontal_padding_2]
43
+
44
+ def postprocess_output(output_tensor, vertical_padding, horizontal_padding, original_shape):
45
+ output_tensor = output_tensor[
46
+ :,
47
+ vertical_padding[0] : output_tensor.shape[1] - vertical_padding[1],
48
+ horizontal_padding[0] : output_tensor.shape[2] - horizontal_padding[1],
49
+ :,
50
+ ]
51
+ output_tensor = tf.image.resize(output_tensor, original_shape)
52
+ return output_tensor.numpy().squeeze()
53
+
54
+ def process_image(input_image):
55
+ input_image = np.array(input_image, dtype=np.float32)
56
+ original_shape = input_image.shape[:2]
57
+ target_shape = get_target_shape(original_shape)
58
+ input_tensor, vertical_padding, horizontal_padding = preprocess_input(input_image, target_shape)
59
+ output_tensor = model(input_tensor)["output"]
60
+ saliency_gray = postprocess_output(output_tensor, vertical_padding, horizontal_padding, original_shape)
61
+ total_saliency = np.sum(saliency_gray)
62
+ saliency_rgb = plt.cm.inferno(saliency_gray)[..., :3]
63
+ alpha = 0.9
64
+ blended_image = alpha * saliency_rgb + (1 - alpha) * input_image / 255
65
+ return blended_image, f"Total grayscale saliency: {total_saliency:.2f}"
66
+
67
+ def predict_single(image):
68
+ return process_image(image)
69
+
70
+ def predict_dual(image1, image2):
71
+ result1_img, result1_val = process_image(image1)
72
+ result2_img, result2_val = process_image(image2)
73
+ return result1_img, result1_val, result2_img, result2_val
74
+
75
+ with gr.Blocks(title="MSI-Net Saliency App") as demo:
76
+ gr.Markdown("## MSI-Net Saliency Map Viewer")
77
+ with gr.Tabs():
78
+ with gr.Tab("Single Image"):
79
+ gr.Markdown("### Upload an image to see its saliency map and total grayscale saliency value.")
80
+ with gr.Row():
81
+ input_image_single = gr.Image(type="pil", label="Input Image")
82
+ with gr.Row():
83
+ output_image_single = gr.Image(type="numpy", label="Saliency Map")
84
+ output_text_single = gr.Textbox(label="Grayscale Sum")
85
+ submit_single = gr.Button("Generate Saliency")
86
+ submit_single.click(fn=predict_single, inputs=input_image_single, outputs=[output_image_single, output_text_single])
87
+
88
+ with gr.Tab("Compare Two Images"):
89
+ gr.Markdown("### Upload two images to compare their saliency maps and grayscale saliency values.")
90
+ with gr.Row():
91
+ input_image1 = gr.Image(type="pil", label="Image 1")
92
+ input_image2 = gr.Image(type="pil", label="Image 2")
93
+ with gr.Row():
94
+ output_image1 = gr.Image(type="numpy", label="Saliency Map 1")
95
+ output_text1 = gr.Textbox(label="Grayscale Sum 1")
96
+ output_image2 = gr.Image(type="numpy", label="Saliency Map 2")
97
+ output_text2 = gr.Textbox(label="Grayscale Sum 2")
98
+ submit_dual = gr.Button("Compare Saliency")
99
+ submit_dual.click(fn=predict_dual, inputs=[input_image1, input_image2], outputs=[output_image1, output_text1, output_image2, output_text2])
100
+
101
+ demo.launch(share=True)