File size: 11,282 Bytes
9feb130 a383bc0 9feb130 f55a209 9feb130 a383bc0 fdd8eb7 ba319d5 e2a5b83 ba319d5 9feb130 3a5b05e f4790af 9feb130 b3a62f4 9feb130 b3a62f4 9feb130 1c8bf4d 9feb130 316436b 9feb130 b3a62f4 9feb130 b3a62f4 9feb130 f55a209 9feb130 45d07a3 9feb130 b3a62f4 9feb130 45d07a3 a383bc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import random
import os
from urllib.parse import urlencode
#from pyngrok import ngrok
import streamlit as st
import streamlit.components.v1 as components
import torch
from transformers import pipeline, set_seed
from transformers import AutoTokenizer, AutoModelForCausalLM
#import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(
f"CUDA device for you Perrito: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Tesla T4
HF_AUTH_TOKEN = "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"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("DEVICE SENOOOOOR", DEVICE)
DTYPE = torch.float32 if DEVICE == "cpu" else torch.float16
MODEL_NAME = os.environ.get("MODEL_NAME", "NbAiLab/nb-gpt-j-6B-alpaca")
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 256))
HEADER_INFO = """
# CBS_Alpaca-GPT-j
Norwegian GPT-J-6B NorPaca Model.
""".strip()
LOGO = "https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Logo_CopenhagenBusinessSchool.svg/1200px-Logo_CopenhagenBusinessSchool.svg.png"
SIDEBAR_INFO = f"""
<div align=center>
<img src="{LOGO}" width=100/>
# NB-GPT-J-6B-NorPaca
</div>
NB-GPT-J-6B NorPaca is a hybrid of a GPT-3 and Llama model, trained on the Norwegian Colossal Corpus and other Internet sources. It is a 6.7 billion parameter model, and is the largest model in the GPT-J family.
This model has been trained with [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax) using TPUs provided by Google through the Tensor Research Cloud program, starting off the [GPT-J-6B model weigths from EleutherAI](https://huggingface.co/EleutherAI/gpt-j-6B), and trained on the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) and other Internet sources. *This demo runs on {DEVICE}*.
For more information, visit the [model repository](https://huggingface.co/CBSMasterThesis).
## Configuration
""".strip()
PROMPT_BOX = "Enter your text..."
EXAMPLES = [
"Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Analyser fordelene ved å jobbe i et team. ### Respons:",
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Oppsummer den faglige artikkelen "Kunstig intelligens og arbeidets fremtid". ### Respons:',
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Generer et kreativt slagord for en bedrift som bruker fornybare energikilder. ### Respons:',
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Regn ut arealet av en firkant med lengde 10m. Skriv ut et flyttall. ### Respons:',
]
def style():
st.markdown("""
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300&display=swap%22%20rel=%22stylesheet%22" rel="stylesheet">
<style>
.ltr,
textarea {
font-family: Roboto !important;
text-align: left;
direction: ltr !important;
}
.ltr-box {
border-bottom: 1px solid #ddd;
padding-bottom: 20px;
}
.rtl {
text-align: left;
direction: ltr !important;
}
span.result-text {
padding: 3px 3px;
line-height: 32px;
}
span.generated-text {
background-color: rgb(118 200 147 / 13%);
}
</style>""", unsafe_allow_html=True)
class Normalizer:
def remove_repetitions(self, text):
"""Remove repetitions"""
first_ocurrences = []
for sentence in text.split("."):
if sentence not in first_ocurrences:
first_ocurrences.append(sentence)
return '.'.join(first_ocurrences)
def trim_last_sentence(self, text):
"""Trim last sentence if incomplete"""
return text[:text.rfind(".") + 1]
def clean_txt(self, text):
return self.trim_last_sentence(self.remove_repetitions(text))
class TextGeneration:
def __init__(self):
self.tokenizer = None
self.generator = None
self.task = "text-generation"
self.model_name_or_path = MODEL_NAME
set_seed(42)
def load(self):
print("Loading model... ", end="")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id,
torch_dtype=DTYPE, low_cpu_mem_usage=False if DEVICE == "cpu" else True
).to(device=DEVICE, non_blocking=True)
_ = self.model.eval()
# -1 if DEVICE == "cpu" else int(DEVICE.split(":")[-1])
device_number = torch.cuda.current_device()
self.generator = pipeline(
self.task, model=self.model, tokenizer=self.tokenizer, device=device_number)
print("Done")
# with torch.no_grad():
# tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True)
# gen_tokens = self.model.generate(tokens, do_sample=True, temperature=0.8, max_length=128)
# generated = tokenizer.batch_decode(gen_tokens)[0]
# return generated
def generate(self, prompt, generation_kwargs):
max_length = len(self.tokenizer(prompt)[
"input_ids"]) + generation_kwargs["max_length"]
generation_kwargs["max_length"] = min(
max_length, self.model.config.n_positions)
# generation_kwargs["num_return_sequences"] = 1
# generation_kwargs["return_full_text"] = False
return self.generator(
prompt,
**generation_kwargs,
)[0]["generated_text"]
# @st.cache(allow_output_mutation=True, hash_funcs={AutoModelForCausalLM: lambda _: None})
@st.cache(allow_output_mutation=True, hash_funcs={TextGeneration: lambda _: None})
def load_text_generator():
generator = TextGeneration()
generator.load()
return generator
def main():
st.set_page_config(
page_title="NB-GPT-J-6B-NorPaca",
page_icon="🇳🇴",
layout="wide",
initial_sidebar_state="expanded"
)
style()
with st.spinner('Loading the model. Please, wait...'):
generator = load_text_generator()
st.sidebar.markdown(SIDEBAR_INFO, unsafe_allow_html=True)
query_params = st.experimental_get_query_params()
if query_params:
st.experimental_set_query_params(**dict())
max_length = st.sidebar.slider(
label='Max words to generate',
help="The maximum length of the sequence to be generated.",
min_value=1,
max_value=MAX_LENGTH,
value=int(query_params.get("max_length", [50])[0]),
step=1
)
top_k = st.sidebar.slider(
label='Top-k',
help="The number of highest probability vocabulary tokens to keep for top-k-filtering",
min_value=40,
max_value=80,
value=int(query_params.get("top_k", [50])[0]),
step=1
)
top_p = st.sidebar.slider(
label='Top-p',
help="Only the most probable tokens with probabilities that add up to `top_p` or higher are kept for "
"generation.",
min_value=0.0,
max_value=1.0,
value=float(query_params.get("top_p", [0.95])[0]),
step=0.01
)
temperature = st.sidebar.slider(
label='Temperature',
help="The value used to module the next token probabilities",
min_value=0.1,
max_value=10.0,
value=float(query_params.get("temperature", [0.8])[0]),
step=0.05
)
do_sample = st.sidebar.selectbox(
label='Sampling?',
options=(False, True),
help="Whether or not to use sampling; use greedy decoding otherwise.",
index=int(query_params.get("do_sample", ["true"])[
0].lower()[0] in ("t", "y", "1")),
)
# do_clean = st.sidebar.selectbox(
# label='Clean text?',
# options=(False, True),
# help="Whether or not to remove repeated words and trim unfinished last sentences.",
# index=int(query_params.get("do_clean", ["true"])[
# 0].lower()[0] in ("t", "y", "1")),
# )
generation_kwargs = {
"max_length": max_length,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"do_sample": do_sample,
# "do_clean": do_clean,
}
st.markdown(HEADER_INFO)
prompts = EXAMPLES + ["Custom"]
prompt = st.selectbox('Examples', prompts, index=len(prompts) - 1)
if prompt == "Custom":
prompt_box = query_params.get("text", [PROMPT_BOX])[0].strip()
else:
prompt_box = prompt
text = st.text_area("Enter text", prompt_box)
generation_kwargs_ph = st.empty()
cleaner = Normalizer()
if st.button("Generate!") or text != PROMPT_BOX:
output = st.empty()
with st.spinner(text="Generating..."):
generation_kwargs_ph.markdown(
", ".join([f"`{k}`: {v}" for k, v in generation_kwargs.items()]))
if text:
share_args = {"text": text, **generation_kwargs}
st.experimental_set_query_params(**share_args)
for _ in range(5):
generated_text = generator.generate(
text, generation_kwargs)
# if do_clean:
# generated_text = cleaner.clean_txt(generated_text)
if generated_text.strip().startswith(text):
generated_text = generated_text.replace(
text, "", 1).strip()
output.markdown(
f'<p class="ltr ltr-box">'
f'<span class="result-text">{text} <span>'
f'<span class="result-text generated-text">{generated_text}</span>'
f'</p>',
unsafe_allow_html=True
)
if generated_text.strip():
components.html(
f"""
<a class="twitter-share-button"
data-text="Check my prompt using NB-GPT-J-6B-NorPaca!🇳🇴 https://ai.nb.no/demo/nb-gpt-j-6B-NorPaca/?{urlencode(share_args)}"
data-show-count="false">
data-size="Small"
data-hashtags="nb,gpt-j"
Tweet
</a>
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
"""
)
break
if not generated_text.strip():
st.markdown(
"*Tried 5 times but did not produce any result. Try again!*")
if __name__ == '__main__':
main()
|