File size: 11,282 Bytes
9feb130
 
 
a383bc0
9feb130
f55a209
9feb130
 
 
 
 
a383bc0
fdd8eb7
ba319d5
 
e2a5b83
ba319d5
9feb130
 
3a5b05e
f4790af
9feb130
b3a62f4
9feb130
b3a62f4
9feb130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c8bf4d
9feb130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316436b
 
9feb130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3a62f4
 
 
 
 
 
 
9feb130
 
 
 
 
 
b3a62f4
9feb130
 
 
 
f55a209
9feb130
 
 
 
45d07a3
9feb130
 
 
 
 
 
 
 
 
 
 
 
 
 
b3a62f4
 
9feb130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d07a3
 
 
a383bc0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import random
import os
from urllib.parse import urlencode
#from pyngrok import ngrok

import streamlit as st
import streamlit.components.v1 as components
import torch
from transformers import pipeline, set_seed
from transformers import AutoTokenizer, AutoModelForCausalLM

#import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(
    f"CUDA device for you Perrito: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Tesla T4

HF_AUTH_TOKEN = "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"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("DEVICE SENOOOOOR", DEVICE)
DTYPE = torch.float32 if DEVICE == "cpu" else torch.float16
MODEL_NAME = os.environ.get("MODEL_NAME", "NbAiLab/nb-gpt-j-6B-alpaca")
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 256))

HEADER_INFO = """
# CBS_Alpaca-GPT-j
Norwegian GPT-J-6B NorPaca Model.
""".strip()
LOGO = "https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Logo_CopenhagenBusinessSchool.svg/1200px-Logo_CopenhagenBusinessSchool.svg.png"
SIDEBAR_INFO = f"""
<div align=center>
<img src="{LOGO}" width=100/>

# NB-GPT-J-6B-NorPaca

</div>

NB-GPT-J-6B NorPaca is a hybrid of a GPT-3 and Llama model, trained on the Norwegian Colossal Corpus and other Internet sources. It is a 6.7 billion parameter model, and is the largest model in the GPT-J family.

This model has been trained with [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax) using TPUs provided by Google through the Tensor Research Cloud program, starting off the [GPT-J-6B model weigths from EleutherAI](https://huggingface.co/EleutherAI/gpt-j-6B), and trained on the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) and other Internet sources. *This demo runs on {DEVICE}*.

For more information, visit the [model repository](https://huggingface.co/CBSMasterThesis).

## Configuration
""".strip()
PROMPT_BOX = "Enter your text..."
EXAMPLES = [
    "Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Analyser fordelene ved å jobbe i et team. ### Respons:",
    'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Oppsummer den faglige artikkelen "Kunstig intelligens og arbeidets fremtid". ### Respons:',
    'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Generer et kreativt slagord for en bedrift som bruker fornybare energikilder. ### Respons:',
    'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Regn ut arealet av en firkant med lengde 10m. Skriv ut et flyttall. ### Respons:',
]


def style():
    st.markdown("""
    <link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300&display=swap%22%20rel=%22stylesheet%22" rel="stylesheet">
    <style>
    .ltr,
    textarea {
        font-family: Roboto !important;
        text-align: left;
        direction: ltr !important;
    }
    .ltr-box {
        border-bottom: 1px solid #ddd;
        padding-bottom: 20px;
    }
    .rtl {
        text-align: left;
        direction: ltr !important;
    }
    span.result-text {
        padding: 3px 3px;
        line-height: 32px;
    }
    span.generated-text {
        background-color: rgb(118 200 147 / 13%);
    }
    </style>""", unsafe_allow_html=True)


class Normalizer:
    def remove_repetitions(self, text):
        """Remove repetitions"""
        first_ocurrences = []
        for sentence in text.split("."):
            if sentence not in first_ocurrences:
                first_ocurrences.append(sentence)
        return '.'.join(first_ocurrences)

    def trim_last_sentence(self, text):
        """Trim last sentence if incomplete"""
        return text[:text.rfind(".") + 1]

    def clean_txt(self, text):
        return self.trim_last_sentence(self.remove_repetitions(text))


class TextGeneration:
    def __init__(self):
        self.tokenizer = None
        self.generator = None
        self.task = "text-generation"
        self.model_name_or_path = MODEL_NAME
        set_seed(42)

    def load(self):
        print("Loading model... ", end="")
        self.tokenizer = AutoTokenizer.from_pretrained(
            self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
        )
        self.model = AutoModelForCausalLM.from_pretrained(
            self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
            pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id,
            torch_dtype=DTYPE, low_cpu_mem_usage=False if DEVICE == "cpu" else True
        ).to(device=DEVICE, non_blocking=True)
        _ = self.model.eval()
        # -1 if DEVICE == "cpu" else int(DEVICE.split(":")[-1])
        device_number = torch.cuda.current_device()
        self.generator = pipeline(
            self.task, model=self.model, tokenizer=self.tokenizer, device=device_number)
        print("Done")
        # with torch.no_grad():
        # tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True)
        # gen_tokens = self.model.generate(tokens, do_sample=True, temperature=0.8, max_length=128)
        # generated = tokenizer.batch_decode(gen_tokens)[0]

        # return generated

    def generate(self, prompt, generation_kwargs):
        max_length = len(self.tokenizer(prompt)[
                         "input_ids"]) + generation_kwargs["max_length"]
        generation_kwargs["max_length"] = min(
            max_length, self.model.config.n_positions)
        # generation_kwargs["num_return_sequences"] = 1
        # generation_kwargs["return_full_text"] = False
        return self.generator(
            prompt,
            **generation_kwargs,
        )[0]["generated_text"]


# @st.cache(allow_output_mutation=True, hash_funcs={AutoModelForCausalLM: lambda _: None})
@st.cache(allow_output_mutation=True, hash_funcs={TextGeneration: lambda _: None})
def load_text_generator():
    generator = TextGeneration()
    generator.load()
    return generator


def main():
    st.set_page_config(
        page_title="NB-GPT-J-6B-NorPaca",
        page_icon="🇳🇴",
        layout="wide",
        initial_sidebar_state="expanded"
    )
    style()
    with st.spinner('Loading the model. Please, wait...'):
        generator = load_text_generator()

    st.sidebar.markdown(SIDEBAR_INFO, unsafe_allow_html=True)
    query_params = st.experimental_get_query_params()
    if query_params:
        st.experimental_set_query_params(**dict())

    max_length = st.sidebar.slider(
        label='Max words to generate',
        help="The maximum length of the sequence to be generated.",
        min_value=1,
        max_value=MAX_LENGTH,
        value=int(query_params.get("max_length", [50])[0]),
        step=1
    )
    top_k = st.sidebar.slider(
        label='Top-k',
        help="The number of highest probability vocabulary tokens to keep for top-k-filtering",
        min_value=40,
        max_value=80,
        value=int(query_params.get("top_k", [50])[0]),
        step=1
    )
    top_p = st.sidebar.slider(
        label='Top-p',
        help="Only the most probable tokens with probabilities that add up to `top_p` or higher are kept for "
             "generation.",
        min_value=0.0,
        max_value=1.0,
        value=float(query_params.get("top_p", [0.95])[0]),
        step=0.01
    )
    temperature = st.sidebar.slider(
        label='Temperature',
        help="The value used to module the next token probabilities",
        min_value=0.1,
        max_value=10.0,
        value=float(query_params.get("temperature", [0.8])[0]),
        step=0.05
    )
    do_sample = st.sidebar.selectbox(
        label='Sampling?',
        options=(False, True),
        help="Whether or not to use sampling; use greedy decoding otherwise.",
        index=int(query_params.get("do_sample", ["true"])[
                  0].lower()[0] in ("t", "y", "1")),
    )
    # do_clean = st.sidebar.selectbox(
    #     label='Clean text?',
    #     options=(False, True),
    #     help="Whether or not to remove repeated words and trim unfinished last sentences.",
    #     index=int(query_params.get("do_clean", ["true"])[
    #               0].lower()[0] in ("t", "y", "1")),
    # )
    generation_kwargs = {
        "max_length": max_length,
        "top_k": top_k,
        "top_p": top_p,
        "temperature": temperature,
        "do_sample": do_sample,
        # "do_clean": do_clean,
    }
    st.markdown(HEADER_INFO)
    prompts = EXAMPLES + ["Custom"]
    prompt = st.selectbox('Examples', prompts, index=len(prompts) - 1)

    if prompt == "Custom":
        prompt_box = query_params.get("text", [PROMPT_BOX])[0].strip()
    else:
        prompt_box = prompt

    text = st.text_area("Enter text", prompt_box)
    generation_kwargs_ph = st.empty()
    cleaner = Normalizer()
    if st.button("Generate!") or text != PROMPT_BOX:
        output = st.empty()
        with st.spinner(text="Generating..."):
            generation_kwargs_ph.markdown(
                ", ".join([f"`{k}`: {v}" for k, v in generation_kwargs.items()]))
            if text:
                share_args = {"text": text, **generation_kwargs}
                st.experimental_set_query_params(**share_args)
                for _ in range(5):
                    generated_text = generator.generate(
                        text, generation_kwargs)
                    # if do_clean:
                    #     generated_text = cleaner.clean_txt(generated_text)
                    if generated_text.strip().startswith(text):
                        generated_text = generated_text.replace(
                            text, "", 1).strip()
                    output.markdown(
                        f'<p class="ltr ltr-box">'
                        f'<span class="result-text">{text} <span>'
                        f'<span class="result-text generated-text">{generated_text}</span>'
                        f'</p>',
                        unsafe_allow_html=True
                    )
                    if generated_text.strip():
                        components.html(
                            f"""
                                <a class="twitter-share-button"
                                data-text="Check my prompt using NB-GPT-J-6B-NorPaca!🇳🇴 https://ai.nb.no/demo/nb-gpt-j-6B-NorPaca/?{urlencode(share_args)}"
                                data-show-count="false">
                                data-size="Small"
                                data-hashtags="nb,gpt-j"
                                Tweet
                                </a>
                                <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
                            """
                        )
                        break
                if not generated_text.strip():
                    st.markdown(
                        "*Tried 5 times but did not produce any result. Try again!*")


if __name__ == '__main__':
    main()