Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -42,17 +42,24 @@ class VectorStore:
|
|
| 42 |
|
| 43 |
def populate_vectors(self, dataset):
|
| 44 |
# Sélectionner les colonnes pertinentes à concaténer
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
cuisine = dataset['train']['cuisine'][:200]
|
| 50 |
-
total_time = dataset['train']['total_time'][:200]
|
| 51 |
-
|
| 52 |
# Concaténer les textes à partir des colonnes sélectionnées
|
| 53 |
texts = [
|
| 54 |
-
f"
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
]
|
| 58 |
|
|
@@ -67,7 +74,7 @@ class VectorStore:
|
|
| 67 |
return results['documents']
|
| 68 |
|
| 69 |
# Initialisation du store de vecteurs et peuplement
|
| 70 |
-
dataset = load_dataset(
|
| 71 |
vector_store = VectorStore("embedding_vector")
|
| 72 |
vector_store.populate_vectors(dataset)
|
| 73 |
|
|
|
|
| 42 |
|
| 43 |
def populate_vectors(self, dataset):
|
| 44 |
# Sélectionner les colonnes pertinentes à concaténer
|
| 45 |
+
titles = dataset['train']['title'][:2000]
|
| 46 |
+
servings = dataset['train']['servings'][:2000]
|
| 47 |
+
total_times = dataset['train']['total_time'][:2000]
|
| 48 |
+
courses = dataset['train']['course'][:2000]
|
| 49 |
+
sections = dataset['train']['sections'][:2000]
|
| 50 |
+
instructions = dataset['train']['instructions'][:2000]
|
| 51 |
+
cuisines = dataset['train']['cuisine'][:2000]
|
| 52 |
+
calories = dataset['train']['calories'][:2000]
|
| 53 |
|
|
|
|
|
|
|
|
|
|
| 54 |
# Concaténer les textes à partir des colonnes sélectionnées
|
| 55 |
texts = [
|
| 56 |
+
f"Title: {title}. Servings: {serving}. Total Time: {total_time} minutes. "
|
| 57 |
+
f"Course: {course}. Sections: {section}. Instructions: {instruction}. "
|
| 58 |
+
f"Cuisine: {cuisine}. Calories: {calorie}."
|
| 59 |
+
for title, serving, total_time, course, section, instruction, cuisine, calorie
|
| 60 |
+
in zip(titles, servings, total_times, courses, sections, instructions, cuisines, calories)
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
|
| 64 |
]
|
| 65 |
|
|
|
|
| 74 |
return results['documents']
|
| 75 |
|
| 76 |
# Initialisation du store de vecteurs et peuplement
|
| 77 |
+
dataset = load_dataset("Maryem2025/final_dataset")
|
| 78 |
vector_store = VectorStore("embedding_vector")
|
| 79 |
vector_store.populate_vectors(dataset)
|
| 80 |
|