File size: 22,228 Bytes
ba58eb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
029bab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8baef5
029bab4
27d82ef
 
 
 
3bb59c3
27d82ef
 
3bb59c3
27d82ef
 
 
 
 
3bb59c3
27d82ef
3bb59c3
27d82ef
 
 
 
 
 
 
 
3bb59c3
27d82ef
 
3bb59c3
27d82ef
 
 
 
 
3bb59c3
27d82ef
3bb59c3
27d82ef
 
 
 
 
 
 
 
3bb59c3
27d82ef
 
 
 
 
 
 
 
3bb59c3
27d82ef
 
3bb59c3
 
 
 
d3607a8
 
 
 
 
3bb59c3
 
d3607a8
3bb59c3
d3607a8
3bb59c3
d3607a8
 
 
 
3bb59c3
d3607a8
3bb59c3
d3607a8
 
 
3bb59c3
d3607a8
 
3bb59c3
d3607a8
 
3bb59c3
d3607a8
 
 
 
 
 
 
 
 
3bb59c3
 
d3607a8
3bb59c3
d3607a8
 
 
 
 
 
 
 
 
 
 
 
 
 
3bb59c3
d8baef5
3bb59c3
d8baef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bb59c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8baef5
3bb59c3
d8baef5
3bb59c3
 
d8baef5
 
 
 
 
 
 
 
3bb59c3
 
 
 
d8baef5
 
 
 
 
 
 
 
 
 
 
 
27d82ef
 
608ebe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb19fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27d82ef
eb19fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608ebe5
eb19fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608ebe5
eb19fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27d82ef
 
eb19fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
# import gradio as gr
# import torch
# from PIL import Image
# from model import CRM
# from inference import generate3d
# import numpy as np

# # Load model
# crm_path = "CRM.pth"  # Make sure the model is uploaded to the Space
# model = CRM(torch.load(crm_path, map_location="cpu"))
# model = model.to("cuda:0" if torch.cuda.is_available() else "cpu")

# def generate_3d(image_path, seed=1234, scale=5.5, step=30):
#     image = Image.open(image_path).convert("RGB")
#     np_img = np.array(image)
#     glb_path = generate3d(model, np_img, np_img, "cuda:0" if torch.cuda.is_available() else "cpu")
#     return glb_path

# iface = gr.Interface(
#     fn=generate_3d,
#     inputs=gr.Image(type="filepath"),
#     outputs=gr.Model3D(),
#     title="Convolutional Reconstruction Model (CRM)",
#     description="Upload an image to generate a 3D model."
# )

# iface.launch()


#############2nd################3
# import os
# import torch
# import gradio as gr
# from huggingface_hub import hf_hub_download
# from model import CRM  # Make sure this matches your model file structure

# # Define model details
# REPO_ID = "Mariam-Elz/CRM"  # Hugging Face model repo
# MODEL_FILES = {
#     "ccm-diffusion": "ccm-diffusion.pth",
#     "pixel-diffusion": "pixel-diffusion.pth",
#     "CRM": "CRM.pth"
# }
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# # Download models from Hugging Face if not already present
# MODEL_DIR = "./models"
# os.makedirs(MODEL_DIR, exist_ok=True)

# for name, filename in MODEL_FILES.items():
#     model_path = os.path.join(MODEL_DIR, filename)
#     if not os.path.exists(model_path):
#         print(f"Downloading {filename}...")
#         hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=MODEL_DIR)

# # Load the model
# print("Loading CRM Model...")
# model = CRM()
# model.load_state_dict(torch.load(os.path.join(MODEL_DIR, MODEL_FILES["CRM"]), map_location=DEVICE))
# model.to(DEVICE)
# model.eval()
# print("✅ Model Loaded Successfully!")

# # Define Gradio Interface
# def predict(input_image):
#     with torch.no_grad():
#         output = model(input_image.to(DEVICE))  # Modify based on model input format
#     return output.cpu()

# demo = gr.Interface(
#     fn=predict,
#     inputs=gr.Image(type="pil"),
#     outputs=gr.Image(type="pil"),
#     title="Convolutional Reconstruction Model (CRM)",
#     description="Upload an image to generate a reconstructed output."
# )

# if __name__ == "__main__":
#     demo.launch()
########################3rd-MAIN######################3

# import torch
# import gradio as gr
# import requests
# import os

# # Download model weights from Hugging Face model repo (if not already present)
# model_repo = "Mariam-Elz/CRM"  # Your Hugging Face model repo

# model_files = {
#     "ccm-diffusion.pth": "ccm-diffusion.pth",
#     "pixel-diffusion.pth": "pixel-diffusion.pth",
#     "CRM.pth": "CRM.pth",
# }

# os.makedirs("models", exist_ok=True)

# for filename, output_path in model_files.items():
#     file_path = f"models/{output_path}"
#     if not os.path.exists(file_path):
#         url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
#         print(f"Downloading {filename}...")
#         response = requests.get(url)
#         with open(file_path, "wb") as f:
#             f.write(response.content)

# # Load model (This part depends on how the model is defined)
# device = "cuda" if torch.cuda.is_available() else "cpu"

# def load_model():
#     model_path = "models/CRM.pth"
#     model = torch.load(model_path, map_location=device)
#     model.eval()
#     return model

# model = load_model()

# # Define inference function
# def infer(image):
#     """Process input image and return a reconstructed image."""
#     with torch.no_grad():
#         # Assuming model expects a tensor input
#         image_tensor = torch.tensor(image).to(device)
#         output = model(image_tensor)
#         return output.cpu().numpy()

# # Create Gradio UI
# demo = gr.Interface(
#     fn=infer,
#     inputs=gr.Image(type="numpy"),
#     outputs=gr.Image(type="numpy"),
#     title="Convolutional Reconstruction Model",
#     description="Upload an image to get the reconstructed output."
# )

# if __name__ == "__main__":
#     demo.launch()


#################4th##################

# import torch
# import gradio as gr
# import requests
# import os

# # Define model repo
# model_repo = "Mariam-Elz/CRM"

# # Define model files and download paths
# model_files = {
#     "CRM.pth": "models/CRM.pth"
# }

# os.makedirs("models", exist_ok=True)

# # Download model files only if they don't exist
# for filename, output_path in model_files.items():
#     if not os.path.exists(output_path):
#         url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
#         print(f"Downloading {filename}...")
#         response = requests.get(url)
#         with open(output_path, "wb") as f:
#             f.write(response.content)

# # Load model with low memory usage
# def load_model():
#     model_path = "models/CRM.pth"
#     model = torch.load(model_path, map_location="cpu")  # Load on CPU to reduce memory usage
#     model.eval()
#     return model

# model = load_model()

# # Define inference function
# def infer(image):
#     """Process input image and return a reconstructed image."""
#     with torch.no_grad():
#         image_tensor = torch.tensor(image).unsqueeze(0)  # Add batch dimension
#         image_tensor = image_tensor.to("cpu")  # Keep on CPU to save memory
#         output = model(image_tensor)
#         return output.squeeze(0).numpy()

# # Create Gradio UI
# demo = gr.Interface(
#     fn=infer,
#     inputs=gr.Image(type="numpy"),
#     outputs=gr.Image(type="numpy"),
#     title="Convolutional Reconstruction Model",
#     description="Upload an image to get the reconstructed output."
# )

# if __name__ == "__main__":
#     demo.launch()


# ##############5TH#################
# import torch
# import torch.nn as nn
# import gradio as gr
# import requests
# import os

# # Define model repo
# model_repo = "Mariam-Elz/CRM"

# # Define model files and download paths
# model_files = {
#     "CRM.pth": "models/CRM.pth"
# }

# os.makedirs("models", exist_ok=True)

# # Download model files only if they don't exist
# for filename, output_path in model_files.items():
#     if not os.path.exists(output_path):
#         url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
#         print(f"Downloading {filename}...")
#         response = requests.get(url)
#         with open(output_path, "wb") as f:
#             f.write(response.content)

# # Define the model architecture (you MUST replace this with your actual model)
# class CRM_Model(nn.Module):
#     def __init__(self):
#         super(CRM_Model, self).__init__()
#         self.layer1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
#         self.relu = nn.ReLU()
#         self.layer2 = nn.Conv2d(64, 3, kernel_size=3, padding=1)

#     def forward(self, x):
#         x = self.layer1(x)
#         x = self.relu(x)
#         x = self.layer2(x)
#         return x

# # Load model with proper architecture
# def load_model():
#     model = CRM_Model()  # Instantiate the model architecture
#     model_path = "models/CRM.pth"
#     model.load_state_dict(torch.load(model_path, map_location="cpu"))  # Load weights
#     model.eval()  # Set to evaluation mode
#     return model

# model = load_model()

# # Define inference function
# def infer(image):
#     """Process input image and return a reconstructed image."""
#     with torch.no_grad():
#         image_tensor = torch.tensor(image).unsqueeze(0).permute(0, 3, 1, 2).float() / 255.0  # Convert to tensor
#         output = model(image_tensor)  # Run through model
#         output = output.squeeze(0).permute(1, 2, 0).numpy() * 255.0  # Convert back to image
#         return output.astype("uint8")

# # Create Gradio UI
# demo = gr.Interface(
#     fn=infer,
#     inputs=gr.Image(type="numpy"),
#     outputs=gr.Image(type="numpy"),
#     title="Convolutional Reconstruction Model",
#     description="Upload an image to get the reconstructed output."
# )

# if __name__ == "__main__":
#     demo.launch()


#############6th-worked-proc##################
# import torch
# import gradio as gr
# import requests
# import os
# import numpy as np

# # Hugging Face Model Repository
# model_repo = "Mariam-Elz/CRM"

# # Download Model Weights (Only CRM.pth to Save Memory)
# model_path = "models/CRM.pth"
# os.makedirs("models", exist_ok=True)

# if not os.path.exists(model_path):
#     url = f"https://huggingface.co/{model_repo}/resolve/main/CRM.pth"
#     print(f"Downloading CRM.pth...")
#     response = requests.get(url)
#     with open(model_path, "wb") as f:
#         f.write(response.content)

# # Set Device (Use CPU to Reduce RAM Usage)
# device = "cpu"

# # Load Model Efficiently
# def load_model():
#     model = torch.load(model_path, map_location=device)
#     if isinstance(model, torch.nn.Module):
#         model.eval()  # Ensure model is in inference mode
#     return model

# # Load model only when needed (saves memory)
# model = load_model()

# # Define Inference Function with Memory Optimizations
# def infer(image):
#     """Process input image and return a reconstructed image."""
#     with torch.no_grad():
#         # Convert image to torch tensor & normalize (float16 to save RAM)
#         image_tensor = torch.tensor(image, dtype=torch.float16).unsqueeze(0).permute(0, 3, 1, 2) / 255.0
#         image_tensor = image_tensor.to(device)

#         # Model Inference
#         output = model(image_tensor)

#         # Convert back to numpy image format
#         output_image = output.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255.0
#         output_image = np.clip(output_image, 0, 255).astype(np.uint8)

#         # Free Memory
#         del image_tensor, output
#         torch.cuda.empty_cache()

#         return output_image

# # Create Gradio UI
# demo = gr.Interface(
#     fn=infer,
#     inputs=gr.Image(type="numpy"),
#     outputs=gr.Image(type="numpy"),
#     title="Optimized Convolutional Reconstruction Model",
#     description="Upload an image to get the reconstructed output with reduced memory usage."
# )

# if __name__ == "__main__":
#     demo.launch()



#############7tth################
# import torch
# import torch.nn as nn
# import gradio as gr
# import requests
# import os
# import torchvision.transforms as transforms
# import numpy as np
# from PIL import Image

# # Hugging Face Model Repository
# model_repo = "Mariam-Elz/CRM"

# # Model File Path
# model_path = "models/CRM.pth"
# os.makedirs("models", exist_ok=True)

# # Download model weights if not present
# if not os.path.exists(model_path):
#     url = f"https://huggingface.co/{model_repo}/resolve/main/CRM.pth"
#     print(f"Downloading CRM.pth...")
#     response = requests.get(url)
#     with open(model_path, "wb") as f:
#         f.write(response.content)

# # Set Device
# device = "cuda" if torch.cuda.is_available() else "cpu"

# # Define Model Architecture (Replace with your actual model)
# class CRMModel(nn.Module):
#     def __init__(self):
#         super(CRMModel, self).__init__()
#         self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
#         self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
#         self.relu = nn.ReLU()
    
#     def forward(self, x):
#         x = self.relu(self.conv1(x))
#         x = self.relu(self.conv2(x))
#         return x

# # Load Model
# def load_model():
#     print("Loading model...")
#     model = CRMModel()  # Use the correct architecture here
#     state_dict = torch.load(model_path, map_location=device)

#     if isinstance(state_dict, dict):  # Ensure it's a valid state_dict
#         model.load_state_dict(state_dict)
#     else:
#         raise ValueError("Error: The loaded state_dict is not in the correct format.")

#     model.to(device)
#     model.eval()
#     print("Model loaded successfully!")
#     return model

# # Load the model
# model = load_model()

# # Define Inference Function
# def infer(image):
#     """Process input image and return a reconstructed 3D output."""
#     try:
#         print("Preprocessing image...")

#         # Convert image to PyTorch tensor & normalize
#         transform = transforms.Compose([
#             transforms.Resize((256, 256)),  # Resize to fit model input
#             transforms.ToTensor(),  # Converts to tensor (C, H, W)
#             transforms.Normalize(mean=[0.5], std=[0.5]),  # Normalize
#         ])
#         image_tensor = transform(image).unsqueeze(0).to(device)  # Add batch dimension

#         print("Running inference...")
#         with torch.no_grad():
#             output = model(image_tensor)  # Forward pass

#         # Ensure output is a valid tensor
#         if isinstance(output, torch.Tensor):
#             output_image = output.squeeze(0).permute(1, 2, 0).cpu().numpy()
#             output_image = np.clip(output_image * 255.0, 0, 255).astype(np.uint8)
#             print("Inference complete! Returning output.")
#             return output_image
#         else:
#             print("Error: Model output is not a tensor.")
#             return None

#     except Exception as e:
#         print(f"Error during inference: {e}")
#         return None

# # Create Gradio UI
# demo = gr.Interface(
#     fn=infer,
#     inputs=gr.Image(type="pil"),
#     outputs=gr.Image(type="numpy"),
#     title="Convolutional Reconstruction Model",
#     description="Upload an image to get the reconstructed output."
# )

# if __name__ == "__main__":
#     demo.launch()




# Not ready to use yet
import spaces
import argparse
import numpy as np
import gradio as gr
from omegaconf import OmegaConf
import torch
from PIL import Image
import PIL
from pipelines import TwoStagePipeline
from huggingface_hub import hf_hub_download
import os
import rembg
from typing import Any
import json
import os
import json
import argparse

from model import CRM
from inference import generate3d

pipeline = None
rembg_session = rembg.new_session()


def expand_to_square(image, bg_color=(0, 0, 0, 0)):
    # expand image to 1:1
    width, height = image.size
    if width == height:
        return image
    new_size = (max(width, height), max(width, height))
    new_image = Image.new("RGBA", new_size, bg_color)
    paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
    new_image.paste(image, paste_position)
    return new_image

def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")


def remove_background(
    image: PIL.Image.Image,
    rembg_session: Any = None,
    force: bool = False,
    **rembg_kwargs,
) -> PIL.Image.Image:
    do_remove = True
    if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
        # explain why current do not rm bg
        print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
        background = Image.new("RGBA", image.size, (0, 0, 0, 0))
        image = Image.alpha_composite(background, image)
        do_remove = False
    do_remove = do_remove or force
    if do_remove:
        image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
    return image

def do_resize_content(original_image: Image, scale_rate):
    # resize image content wile retain the original image size
    if scale_rate != 1:
        # Calculate the new size after rescaling
        new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
        # Resize the image while maintaining the aspect ratio
        resized_image = original_image.resize(new_size)
        # Create a new image with the original size and black background
        padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
        paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
        padded_image.paste(resized_image, paste_position)
        return padded_image
    else:
        return original_image

def add_background(image, bg_color=(255, 255, 255)):
    # given an RGBA image, alpha channel is used as mask to add background color
    background = Image.new("RGBA", image.size, bg_color)
    return Image.alpha_composite(background, image)


def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
    """
    input image is a pil image in RGBA, return RGB image
    """
    print(background_choice)
    if background_choice == "Alpha as mask":
        background = Image.new("RGBA", image.size, (0, 0, 0, 0))
        image = Image.alpha_composite(background, image)
    else:
        image = remove_background(image, rembg_session, force=True)
    image = do_resize_content(image, foreground_ratio)
    image = expand_to_square(image)
    image = add_background(image, backgroud_color)
    return image.convert("RGB")

@spaces.GPU
def gen_image(input_image, seed, scale, step):
    global pipeline, model, args
    pipeline.set_seed(seed)
    rt_dict = pipeline(input_image, scale=scale, step=step)
    stage1_images = rt_dict["stage1_images"]
    stage2_images = rt_dict["stage2_images"]
    np_imgs = np.concatenate(stage1_images, 1)
    np_xyzs = np.concatenate(stage2_images, 1)

    glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
    return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path#, obj_path


parser = argparse.ArgumentParser()
parser.add_argument(
    "--stage1_config",
    type=str,
    default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
    help="config for stage1",
)
parser.add_argument(
    "--stage2_config",
    type=str,
    default="configs/stage2-v2-snr.yaml",
    help="config for stage2",
)

parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()

crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
specs = json.load(open("configs/specs_objaverse_total.json"))
model = CRM(specs)
model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False)
model = model.to(args.device)

stage1_config = OmegaConf.load(args.stage1_config).config
stage2_config = OmegaConf.load(args.stage2_config).config
stage2_sampler_config = stage2_config.sampler
stage1_sampler_config = stage1_config.sampler

stage1_model_config = stage1_config.models
stage2_model_config = stage2_config.models

xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
stage1_model_config.resume = pixel_path
stage2_model_config.resume = xyz_path

pipeline = TwoStagePipeline(
    stage1_model_config,
    stage2_model_config,
    stage1_sampler_config,
    stage2_sampler_config,
    device=args.device,
    dtype=torch.float32
)

_DESCRIPTION = '''
* Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo.
* Project page of CRM: https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/
* If you find the output unsatisfying, try using different seeds:)
'''

with gr.Blocks() as demo:
    gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model")
    gr.Markdown(_DESCRIPTION)
    with gr.Row():
        with gr.Column():
            with gr.Row():
                image_input = gr.Image(
                    label="Image input",
                    image_mode="RGBA",
                    sources="upload",
                    type="pil",
                )
                processed_image = gr.Image(label="Processed Image", interactive=False, type="pil", image_mode="RGB")
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        background_choice = gr.Radio([
                                "Alpha as mask",
                                "Auto Remove background"
                            ], value="Auto Remove background",
                            label="backgroud choice")
                        # do_remove_background = gr.Checkbox(label=, value=True)
                        # force_remove = gr.Checkbox(label=, value=False)
                    back_groud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False)
                    foreground_ratio = gr.Slider(
                        label="Foreground Ratio",
                        minimum=0.5,
                        maximum=1.0,
                        value=1.0,
                        step=0.05,
                    )

                with gr.Column():
                    seed = gr.Number(value=1234, label="seed", precision=0)
                    guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale")
                    step = gr.Number(value=30, minimum=30, maximum=100, label="sample steps", precision=0)
            text_button = gr.Button("Generate 3D shape")
            gr.Examples(
                examples=[os.path.join("examples", i) for i in os.listdir("examples")],
                inputs=[image_input],
                examples_per_page = 20,
            )
        with gr.Column():
            image_output = gr.Image(interactive=False, label="Output RGB image")
            xyz_ouput = gr.Image(interactive=False, label="Output CCM image")

            output_model = gr.Model3D(
                label="Output OBJ",
                interactive=False,
            )
            gr.Markdown("Note: Ensure that the input image is correctly pre-processed into a grey background, otherwise the results will be unpredictable.")

    inputs = [
        processed_image,
        seed,
        guidance_scale,
        step,
    ]
    outputs = [
        image_output,
        xyz_ouput,
        output_model,
        # output_obj,
    ]


    text_button.click(fn=check_input_image, inputs=[image_input]).success(
        fn=preprocess_image,
        inputs=[image_input, background_choice, foreground_ratio, back_groud_color],
        outputs=[processed_image],
    ).success(
        fn=gen_image,
        inputs=inputs,
        outputs=outputs,
    )
    demo.queue().launch()