File size: 9,850 Bytes
55b0a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import gradio as gr
from dotenv import load_dotenv

# Import from other modules
from ibfs import start_ibfs, handle_choice
from zero_shot import start_zero_shot

# Load environment variables
load_dotenv()



# Define dependent variables for user evaluation
DV_QUESTIONS = [
    "How satisfied are you with the answer? (1-5)",
    "How clear was the explanation? (1-5)",
    "How relevant was the answer to your query? (1-5)",
    "How confident are you in the accuracy of the answer? (1-5)",
    "Would you use this method again for similar questions? (Yes/No)"
]


def save_dv_responses(user_id, method, responses):
    """Save user's responses to dependent variable questions."""
    from utils import save_results
    import json
    from datetime import datetime

    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"ibfs_results/{user_id}_{method}_dv_{timestamp}.json"

    with open(filename, "w") as f:
        json.dump(responses, f, indent=2)

    return filename


def process_dv_responses(state, *responses):
    """Process and save the user's responses to dependent variables."""
    if not state:
        return "No active session"

    user_id = state.get("user_id", "unknown")
    method = state.get("method", "unknown")

    # Create a dictionary of responses
    response_dict = {
        "user_id": user_id,
        "method": method,
        "responses": {}
    }

    for i, response in enumerate(responses):
        response_dict["responses"][f"question_{i + 1}"] = {
            "question": DV_QUESTIONS[i],
            "response": response
        }

    # Save responses
    save_path = save_dv_responses(user_id, method, response_dict)

    return f"Thank you for your feedback! Responses saved to {save_path}"


def create_ibfs_interface():
    """Create the IBFS tab interface."""
    with gr.Column():
        gr.Markdown("# IBFS")
        gr.Markdown("Enter your query and set parameters to explore different strategies.")

        with gr.Row():
            with gr.Column(scale=3):
                ibfs_query_input = gr.Textbox(
                    label="Query",
                    placeholder="Enter your question here...",
                    lines=3
                )

            with gr.Column(scale=1):
                k_slider = gr.Slider(
                    minimum=2,
                    maximum=5,
                    step=1,
                    value=3,
                    label="k (Branching Factor - options per step)"
                )
                m_slider = gr.Slider(
                    minimum=1,
                    maximum=3,
                    step=1,
                    value=2,
                    label="m (Depth - number of iterations)"
                )

        ibfs_start_btn = gr.Button("Start IBFS Process", variant="primary")

        # State for maintaining context between steps
        ibfs_state = gr.State(None)

        # Chat display
        ibfs_chatbot = gr.Chatbot(
            label="Interactive Search Process",
            height=600,
            type="messages"
        )

        # User choice input for selecting strategies
        ibfs_choice_input = gr.Textbox(
            label="Enter the number of your choice (e.g., 1, 2, 3...)",
            placeholder="Type a number and press Enter",
            lines=1
        )

        # Event handlers for IBFS
        ibfs_start_btn.click(
            fn=start_ibfs,
            inputs=[ibfs_query_input, k_slider, m_slider],
            outputs=[ibfs_state, ibfs_chatbot],
            show_progress="minimal"
        )

        ibfs_choice_input.submit(
            fn=handle_choice,
            inputs=[ibfs_state, ibfs_choice_input],
            outputs=[ibfs_state, ibfs_chatbot],
            show_progress="minimal"
        )

        ibfs_choice_input.submit(
            fn=lambda: "",
            inputs=[],
            outputs=[ibfs_choice_input]
        )

        # Dependent Variables Section (initially hidden)
        with gr.Accordion("Evaluation Questions", open=False, visible=False) as ibfs_dv_accordion:
            ibfs_dv_inputs = []
            for i, question in enumerate(DV_QUESTIONS):
                if "1-5" in question:
                    dv_input = gr.Slider(
                        minimum=1,
                        maximum=5,
                        step=1,
                        value=3,
                        label=question
                    )
                elif "Yes/No" in question:
                    dv_input = gr.Radio(
                        choices=["Yes", "No"],
                        label=question
                    )
                else:
                    dv_input = gr.Textbox(
                        label=question
                    )
                ibfs_dv_inputs.append(dv_input)

            ibfs_submit_dv_btn = gr.Button("Submit Evaluation", variant="primary")
            ibfs_dv_result = gr.Markdown("")

            # Function to show DV accordion after final answer is generated
            def show_dv_section(state):
                if state and state.get("current_step", 0) == 0 and state.get("strategy_path", []):
                    # This means we've completed a cycle and have a final answer
                    state["method"] = "ibfs"  # Add method to state for DV processing
                    return gr.update(visible=True, open=True)
                return gr.update(visible=False, open=False)

            # Update visibility of DV section when state changes
            ibfs_state.change(
                fn=show_dv_section,
                inputs=[ibfs_state],
                outputs=[ibfs_dv_accordion]
            )

            # Handle DV submission
            ibfs_submit_dv_btn.click(
                fn=process_dv_responses,
                inputs=[ibfs_state] + ibfs_dv_inputs,
                outputs=ibfs_dv_result
            )

    return (ibfs_query_input, k_slider, m_slider, ibfs_start_btn,
            ibfs_state, ibfs_chatbot, ibfs_choice_input)


def create_zero_shot_interface():
    """Create the Zero-Shot tab interface."""
    with gr.Column():
        gr.Markdown("# Zero-Shot Direct Answer")
        gr.Markdown("Enter your query to get a direct answer without interactive exploration.")

        zero_query_input = gr.Textbox(
            label="Query",
            placeholder="Enter your question here...",
            lines=3
        )

        zero_shot_btn = gr.Button("Get Direct Answer", variant="primary")

        # State for maintaining context for zero-shot
        zero_state = gr.State(None)

        # Chat display
        zero_chatbot = gr.Chatbot(
            label="Direct Answer",
            height=600,
            type="messages"
        )

        # Modified zero-shot function to return state
        def zero_shot_with_state(query):
            """Wrapper for zero_shot to also return state"""
            from utils import generate_user_id
            chat_history = start_zero_shot(query)
            # Create state with user_id and method for DV processing
            state = {
                "user_id": generate_user_id(),
                "method": "zero_shot",
                "has_answer": True  # Flag to indicate answer is ready
            }
            return state, chat_history

        # Event handler for zero-shot
        zero_shot_btn.click(
            fn=zero_shot_with_state,
            inputs=zero_query_input,
            outputs=[zero_state, zero_chatbot],
            show_progress="minimal"
        )

        # Dependent Variables Section (initially hidden)
        with gr.Accordion("Evaluation Questions", open=False, visible=False) as zero_dv_accordion:
            zero_dv_inputs = []
            for i, question in enumerate(DV_QUESTIONS):
                if "1-5" in question:
                    dv_input = gr.Slider(
                        minimum=1,
                        maximum=5,
                        step=1,
                        value=3,
                        label=question
                    )
                elif "Yes/No" in question:
                    dv_input = gr.Radio(
                        choices=["Yes", "No"],
                        label=question
                    )
                else:
                    dv_input = gr.Textbox(
                        label=question
                    )
                zero_dv_inputs.append(dv_input)

            zero_submit_dv_btn = gr.Button("Submit Evaluation", variant="primary")
            zero_dv_result = gr.Markdown("")

            # Function to show DV accordion after answer is generated
            def show_zero_dv_section(state):
                if state and state.get("has_answer", False):
                    return gr.update(visible=True, open=True)
                return gr.update(visible=False, open=False)

            # Update visibility of DV section when state changes
            zero_state.change(
                fn=show_zero_dv_section,
                inputs=[zero_state],
                outputs=[zero_dv_accordion]
            )

            # Handle DV submission
            zero_submit_dv_btn.click(
                fn=process_dv_responses,
                inputs=[zero_state] + zero_dv_inputs,
                outputs=zero_dv_result
            )

    return zero_query_input, zero_shot_btn, zero_chatbot


def create_gradio_app():
    """Create the main Gradio application with tabs."""
    with gr.Blocks() as app:
        with gr.Tabs() as tabs:
            # IBFS Tab
            with gr.Tab("IBFS"):
                create_ibfs_interface()

            # Zero-Shot Tab
            with gr.Tab("Zero-Shot"):
                create_zero_shot_interface()

    return app


# Create and launch the app
if __name__ == "__main__":
    ibfs_app = create_gradio_app()
    ibfs_app.launch(share=True)