Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
from byaldi import RAGMultiModalModel
|
4 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
5 |
+
from qwen_vl_utils import process_vision_info
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Load models colpali
|
9 |
+
def load_models():
|
10 |
+
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
11 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
|
12 |
+
trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU
|
13 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
14 |
+
return RAG, model, processor
|
15 |
+
|
16 |
+
RAG, model, processor = load_models()
|
17 |
+
# Function for OCR and search
|
18 |
+
def ocr_and_search(image, keyword):
|
19 |
+
text_query = "Extract all the text in Hindi and English from the image."
|
20 |
+
|
21 |
+
messages = [
|
22 |
+
{
|
23 |
+
"role": "user",
|
24 |
+
"content": [
|
25 |
+
{"type": "image", "image": image},
|
26 |
+
{"type": "text", "text": text_query},
|
27 |
+
],
|
28 |
+
}
|
29 |
+
]
|
30 |
+
|
31 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
32 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
33 |
+
inputs = processor(
|
34 |
+
text=[text],
|
35 |
+
images=image_inputs,
|
36 |
+
videos=video_inputs,
|
37 |
+
padding=True,
|
38 |
+
return_tensors="pt",
|
39 |
+
).to("cpu")
|
40 |
+
|
41 |
+
# Generate text
|
42 |
+
with torch.no_grad():
|
43 |
+
generated_ids = model.generate(**inputs, max_new_tokens=2000)
|
44 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
45 |
+
|
46 |
+
# Decode output while avoiding any coordinate information
|
47 |
+
extracted_text = processor.batch_decode(
|
48 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
49 |
+
)[0]
|
50 |
+
extracted_text = extracted_text.replace("The text in the image is:", "").strip()
|
51 |
+
# Filter out any unwanted text (like coordinates)
|
52 |
+
extracted_text = ' '.join(filter(lambda x: not any(char.isdigit() for char in x), extracted_text.split()))
|
53 |
+
|
54 |
+
# Separate English and Hindi text using a simple heuristic
|
55 |
+
english_text = ' '.join(filter(lambda x: all((char.islower() or char.isupper()) or char == "'" for char in x), extracted_text.split()))
|
56 |
+
hindi_text = ' '.join(filter(lambda x: any(ord(char) >= 128 for char in x), extracted_text.split()))
|
57 |
+
|
58 |
+
# Perform keyword search
|
59 |
+
keyword_lower = keyword.lower().strip()
|
60 |
+
matched_keywords = []
|
61 |
+
if keyword_lower:
|
62 |
+
if keyword_lower in extracted_text.lower():
|
63 |
+
matched_keywords = [keyword]
|
64 |
+
|
65 |
+
# Prepare plain text output
|
66 |
+
plain_text_output = (
|
67 |
+
f"- English: {' '.join(english_text.split()) if english_text else 'No English text found.'}\n\n"
|
68 |
+
f"- Hindi: {' '.join(hindi_text.split()) if hindi_text else 'No Hindi text found.'}"
|
69 |
+
)
|
70 |
+
|
71 |
+
return extracted_text, matched_keywords, plain_text_output
|
72 |
+
|
73 |
+
# Gradio App function
|
74 |
+
def app(image, keyword):
|
75 |
+
# Call OCR and search function
|
76 |
+
extracted_text, matched_keywords, plain_text_output = ocr_and_search(image, keyword)
|
77 |
+
|
78 |
+
# Format search results
|
79 |
+
search_results_str = "\n".join(matched_keywords) if matched_keywords else "No matches found for the keyword."
|
80 |
+
|
81 |
+
return extracted_text, search_results_str, plain_text_output
|
82 |
+
|
83 |
+
# Gradio Interface
|
84 |
+
iface = gr.Interface(
|
85 |
+
fn=app,
|
86 |
+
inputs=[
|
87 |
+
gr.Image(type="pil", label="Upload an Image"),
|
88 |
+
gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword")
|
89 |
+
],
|
90 |
+
outputs=[
|
91 |
+
gr.Textbox(label="Extracted Text"),
|
92 |
+
gr.Textbox(label="Search Results"),
|
93 |
+
gr.Textbox(label="Plain Text Output", lines=10) # For plain text output
|
94 |
+
],
|
95 |
+
title="Optical Character Recognition with Keyword Search from Images",
|
96 |
+
)
|
97 |
+
|
98 |
+
# Launch Gradio App
|
99 |
+
iface.launch()
|