Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -3,46 +3,31 @@ import torch
|
|
3 |
import numpy as np
|
4 |
import modin.pandas as pd
|
5 |
from PIL import Image
|
6 |
-
from diffusers import DiffusionPipeline #, StableDiffusion3Pipeline
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
torch.cuda.empty_cache()
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
|
15 |
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.9.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.9.1")
|
18 |
-
pipe.enable_xformers_memory_efficient_attention()
|
19 |
-
pipe = pipe.to(device)
|
20 |
-
torch.cuda.empty_cache()
|
21 |
-
|
22 |
-
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
23 |
-
torch.cuda.empty_cache()
|
24 |
-
return image
|
25 |
-
|
26 |
-
if Model == "Animagine XL 4":
|
27 |
-
animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-4.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-4.0")
|
28 |
-
animagine.enable_xformers_memory_efficient_attention()
|
29 |
-
animagine = animagine.to(device)
|
30 |
-
torch.cuda.empty_cache()
|
31 |
-
|
32 |
-
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
33 |
-
torch.cuda.empty_cache()
|
34 |
-
return image
|
35 |
|
36 |
-
|
37 |
return image
|
38 |
|
39 |
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 4',], value='PhotoReal', label='Choose Model'),
|
40 |
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
41 |
-
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
42 |
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
43 |
gr.Slider(512, 1024, 768, step=128, label='Width'),
|
44 |
-
gr.Slider(3, maximum=12, value=5, step=.25, label='Guidance Scale', info="5-7 for PhotoReal and 7-10 for Animagine"),
|
45 |
-
gr.Slider(25, maximum=50, value=25, step=25, label='Number of Iterations'),
|
46 |
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
|
47 |
],
|
48 |
outputs=gr.Image(label='Generated Image'),
|
|
|
3 |
import numpy as np
|
4 |
import modin.pandas as pd
|
5 |
from PIL import Image
|
6 |
+
from diffusers import StableDiffusion3Pipeline #DiffusionPipeline #, StableDiffusion3Pipeline
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
torch.cuda.max_memory_allocated(device=device)
|
11 |
+
torch.cuda.empty_cache()
|
12 |
|
13 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large-turbo", torch_dtype=torch.bfloat16)
|
14 |
+
pipe = pipe.to(device)
|
15 |
+
|
16 |
+
|
17 |
+
def genie (Prompt, height, width, seed):
|
18 |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
|
19 |
|
20 |
+
image = pipe(Prompt, num_inference_steps=4, height=height, width=width, guidance_scale=0.0,).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
22 |
return image
|
23 |
|
24 |
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 4',], value='PhotoReal', label='Choose Model'),
|
25 |
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
26 |
+
#gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
27 |
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
28 |
gr.Slider(512, 1024, 768, step=128, label='Width'),
|
29 |
+
#gr.Slider(3, maximum=12, value=5, step=.25, label='Guidance Scale', info="5-7 for PhotoReal and 7-10 for Animagine"),
|
30 |
+
#gr.Slider(25, maximum=50, value=25, step=25, label='Number of Iterations'),
|
31 |
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
|
32 |
],
|
33 |
outputs=gr.Image(label='Generated Image'),
|