Manjushri commited on
Commit
9c2a5f6
·
verified ·
1 Parent(s): 8b28b93

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -26
app.py CHANGED
@@ -3,46 +3,31 @@ import torch
3
  import numpy as np
4
  import modin.pandas as pd
5
  from PIL import Image
6
- from diffusers import DiffusionPipeline #, StableDiffusion3Pipeline
7
  from huggingface_hub import hf_hub_download
8
 
9
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
10
  torch.cuda.max_memory_allocated(device=device)
11
- torch.cuda.empty_cache()
12
 
13
- def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
 
 
 
 
14
  generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
15
 
16
- if Model == "PhotoReal":
17
- pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.9.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.9.1")
18
- pipe.enable_xformers_memory_efficient_attention()
19
- pipe = pipe.to(device)
20
- torch.cuda.empty_cache()
21
-
22
- image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
23
- torch.cuda.empty_cache()
24
- return image
25
-
26
- if Model == "Animagine XL 4":
27
- animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-4.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-4.0")
28
- animagine.enable_xformers_memory_efficient_attention()
29
- animagine = animagine.to(device)
30
- torch.cuda.empty_cache()
31
-
32
- image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
33
- torch.cuda.empty_cache()
34
- return image
35
 
36
-
37
  return image
38
 
39
  gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 4',], value='PhotoReal', label='Choose Model'),
40
  gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
41
- gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
42
  gr.Slider(512, 1024, 768, step=128, label='Height'),
43
  gr.Slider(512, 1024, 768, step=128, label='Width'),
44
- gr.Slider(3, maximum=12, value=5, step=.25, label='Guidance Scale', info="5-7 for PhotoReal and 7-10 for Animagine"),
45
- gr.Slider(25, maximum=50, value=25, step=25, label='Number of Iterations'),
46
  gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
47
  ],
48
  outputs=gr.Image(label='Generated Image'),
 
3
  import numpy as np
4
  import modin.pandas as pd
5
  from PIL import Image
6
+ from diffusers import StableDiffusion3Pipeline #DiffusionPipeline #, StableDiffusion3Pipeline
7
  from huggingface_hub import hf_hub_download
8
 
9
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
10
  torch.cuda.max_memory_allocated(device=device)
11
+ torch.cuda.empty_cache()
12
 
13
+ pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large-turbo", torch_dtype=torch.bfloat16)
14
+ pipe = pipe.to(device)
15
+
16
+
17
+ def genie (Prompt, height, width, seed):
18
  generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
19
 
20
+ image = pipe(Prompt, num_inference_steps=4, height=height, width=width, guidance_scale=0.0,).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
 
22
  return image
23
 
24
  gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 4',], value='PhotoReal', label='Choose Model'),
25
  gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
26
+ #gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
27
  gr.Slider(512, 1024, 768, step=128, label='Height'),
28
  gr.Slider(512, 1024, 768, step=128, label='Width'),
29
+ #gr.Slider(3, maximum=12, value=5, step=.25, label='Guidance Scale', info="5-7 for PhotoReal and 7-10 for Animagine"),
30
+ #gr.Slider(25, maximum=50, value=25, step=25, label='Number of Iterations'),
31
  gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
32
  ],
33
  outputs=gr.Image(label='Generated Image'),