Manjushri commited on
Commit
41ed172
·
verified ·
1 Parent(s): b0cfd62

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -33
app.py CHANGED
@@ -3,52 +3,46 @@ import torch
3
  import numpy as np
4
  import modin.pandas as pd
5
  from PIL import Image
6
- from diffusers import StableDiffusion3Pipeline #DiffusionPipeline #, StableDiffusion3Pipeline
7
  from huggingface_hub import hf_hub_download
8
- from diffusers import BitsAndBytesConfig, SD3Transformer2DModel
9
 
10
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
11
  torch.cuda.max_memory_allocated(device=device)
12
- torch.cuda.empty_cache()
13
 
14
- model_id = "stabilityai/stable-diffusion-3.5-large-turbo"
15
-
16
- nf4_config = BitsAndBytesConfig(
17
- load_in_4bit=True,
18
- bnb_4bit_quant_type="nf4",
19
- bnb_4bit_compute_dtype=torch.bfloat16
20
- )
21
- model_nf4 = SD3Transformer2DModel.from_pretrained(
22
- model_id,
23
- subfolder="transformer",
24
- quantization_config=nf4_config,
25
- torch_dtype=torch.bfloat16
26
- )
27
-
28
- t5_nf4 = T5EncoderModel.from_pretrained("diffusers/t5-nf4", torch_dtype=torch.bfloat16)
29
-
30
- pipeline = StableDiffusion3Pipeline.from_pretrained(
31
- model_id,
32
- transformer=model_nf4,
33
- text_encoder_3=t5_nf4,
34
- torch_dtype=torch.bfloat16
35
- )
36
- pipeline.enable_model_cpu_offload()
37
-
38
- def genie (Prompt, height, width, seed):
39
  generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
40
 
41
- image = pipeline(Prompt, num_inference_steps=4, height=height, width=width, guidance_scale=0.0,).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
 
43
  return image
44
 
45
- gr.Interface(fn=genie, inputs=[#gr.Radio(['PhotoReal', 'Animagine XL 4',], value='PhotoReal', label='Choose Model'),
46
  gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
47
- #gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
48
  gr.Slider(512, 1024, 768, step=128, label='Height'),
49
  gr.Slider(512, 1024, 768, step=128, label='Width'),
50
- #gr.Slider(3, maximum=12, value=5, step=.25, label='Guidance Scale', info="5-7 for PhotoReal and 7-10 for Animagine"),
51
- #gr.Slider(25, maximum=50, value=25, step=25, label='Number of Iterations'),
52
  gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
53
  ],
54
  outputs=gr.Image(label='Generated Image'),
 
3
  import numpy as np
4
  import modin.pandas as pd
5
  from PIL import Image
6
+ from diffusers import DiffusionPipeline #, StableDiffusion3Pipeline
7
  from huggingface_hub import hf_hub_download
 
8
 
9
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
10
  torch.cuda.max_memory_allocated(device=device)
11
+ torch.cuda.empty_cache()
12
 
13
+ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
15
 
16
+ if Model == "PhotoReal":
17
+ pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.9.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.9.1")
18
+ pipe.enable_xformers_memory_efficient_attention()
19
+ pipe = pipe.to(device)
20
+ torch.cuda.empty_cache()
21
+
22
+ image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
23
+ torch.cuda.empty_cache()
24
+ return image
25
+
26
+ if Model == "Animagine XL 4":
27
+ animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-4.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-4.0")
28
+ animagine.enable_xformers_memory_efficient_attention()
29
+ animagine = animagine.to(device)
30
+ torch.cuda.empty_cache()
31
+
32
+ image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
33
+ torch.cuda.empty_cache()
34
+ return image
35
 
36
+
37
  return image
38
 
39
+ gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 4',], value='PhotoReal', label='Choose Model'),
40
  gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
41
+ gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
42
  gr.Slider(512, 1024, 768, step=128, label='Height'),
43
  gr.Slider(512, 1024, 768, step=128, label='Width'),
44
+ gr.Slider(3, maximum=12, value=5, step=.25, label='Guidance Scale', info="5-7 for PhotoReal and 7-10 for Animagine"),
45
+ gr.Slider(25, maximum=50, value=25, step=25, label='Number of Iterations'),
46
  gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
47
  ],
48
  outputs=gr.Image(label='Generated Image'),