import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "ai4bharat/Airavata" # Load the model in 8-bit precision to reduce memory usage model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", load_in_8bit=True ) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate_text(prompt, max_length): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=max_length) return tokenizer.decode(outputs[0], skip_special_tokens=True) interface = gr.Interface( fn=generate_text, inputs=[ gr.inputs.Textbox(label="Enter your prompt"), gr.inputs.Slider(10, 100, step=10, label="Max length") ], outputs="text", title="Airavata Text Generation Model", description="Generate text in Indic languages using the Airavata model." ) interface.launch()