import streamlit as st import pandas as pd import plotly.express as px from datetime import datetime, timedelta from simple_salesforce import Salesforce from transformers import pipeline from utils import fetch_salesforce_data, detect_anomalies, generate_pdf_report # Streamlit app configuration st.set_page_config(page_title="LabOps Dashboard", layout="wide") # Cache Salesforce connection @st.cache_resource def init_salesforce(): try: return Salesforce( username=st.secrets["sf_username"], password=st.secrets["sf_password"], security_token=st.secrets["sf_security_token"] ) except Exception as e: st.error(f"Failed to connect to Salesforce: {e}") return None # Cache Hugging Face model @st.cache_resource def init_anomaly_detector(): return pipeline("text-classification", model="distilbert-base-uncased", tokenizer="distilbert-base-uncased") # Initialize connections sf = init_salesforce() anomaly_detector = init_anomaly_detector() # Cache data fetching @st.cache_data(ttl=10) # Cache for 10 seconds to meet refresh requirement def get_filtered_data(lab_site, equipment_type, date_start, date_end): query = f""" SELECT Equipment__c, Log_Timestamp__c, Status__c, Usage_Count__c, Lab__c, Equipment_Type__c FROM SmartLog__c WHERE Log_Timestamp__c >= {date_start.strftime('%Y-%m-%d')} AND Log_Timestamp__c <= {date_end.strftime('%Y-%m-%d')} """ if lab_site != "All": query += f" AND Lab__c = '{lab_site}'" if equipment_type != "All": query += f" AND Equipment_Type__c = '{equipment_type}'" query += " LIMIT 1000" # Mitigate data overload return fetch_salesforce_data(sf, query) def main(): if sf is None: st.error("Cannot proceed without Salesforce connection.") return st.title("Multi-Device LabOps Dashboard") # Filters col1, col2, col3 = st.columns(3) with col1: lab_site = st.selectbox("Select Lab Site", ["All", "Lab1", "Lab2", "Lab3"]) with col2: equipment_type = st.selectbox("Equipment Type", ["All", "Cell Analyzer", "Weight Log", "UV Verification"]) with col3: default_start = datetime.now() - timedelta(days=7) default_end = datetime.now() date_range = st.date_input("Date Range", [default_start, default_end]) # Validate date range if len(date_range) != 2: st.warning("Please select a valid date range.") return date_start, date_end = date_range # Fetch and process data data = get_filtered_data(lab_site, equipment_type, date_start, date_end) if not data: st.warning("No data available for the selected filters.") return df = pd.DataFrame(data) df["Log_Timestamp__c"] = pd.to_datetime(df["Log_Timestamp__c"]) df["Anomaly"] = df["Status__c"].apply(lambda x: detect_anomalies(str(x), anomaly_detector)) # Pagination page_size = 10 page = st.number_input("Page", min_value=1, value=1, step=1) start_idx = (page - 1) * page_size end_idx = start_idx + page_size paginated_df = df[start_idx:end_idx] # Device Cards st.subheader("Device Status") for _, row in paginated_df.iterrows(): anomaly = "⚠️ Anomaly" if row["Anomaly"] == "POSITIVE" else "✅ Normal" st.markdown(f""" **{row['Equipment__c']}** | Lab: {row['Lab__c']} | Health: {row['Status__c']} | Usage: {row['Usage_Count__c']} | Last Log: {row['Log_Timestamp__c'].strftime('%Y-%m-%d %H:%M:%S')} | {anomaly} """) # Usage Chart st.subheader("Usage Trends") fig = px.line( df, x="Log_Timestamp__c", y="Usage_Count__c", color="Equipment__c", title="Daily Usage Trends", labels={"Log_Timestamp__c": "Timestamp", "Usage_Count__c": "Usage Count"} ) fig.update_layout(xaxis_title="Timestamp", yaxis_title="Usage Count") st.plotly_chart(fig, use_container_width=True) # Downtime Chart st.subheader("Downtime Patterns") downtime_df = df[df["Status__c"] == "Down"] if not downtime_df.empty: fig_downtime = px.histogram( downtime_df, x="Log_Timestamp__c", color="Equipment__c", title="Downtime Patterns", labels={"Log_Timestamp__c": "Timestamp"} ) fig_downtime.update_layout(xaxis_title="Timestamp", yaxis_title="Downtime Count") st.plotly_chart(fig_downtime, use_container_width=True) else: st.info("No downtime events found for the selected filters.") # AMC Reminders st.subheader("AMC Reminders") amc_query = "SELECT Equipment__c, AMC_Expiry_Date__c FROM Equipment__c WHERE AMC_Expiry_Date__c <= NEXT_N_DAYS:14" amc_data = fetch_salesforce_data(sf, amc_query, retries=3) if amc_data: for record in amc_data: st.write(f"Equipment {record['Equipment__c']} - AMC Expiry: {record['AMC_Expiry_Date__c']}") else: st.info("No AMC expiries within the next 14 days.") # Export PDF if st.button("Export PDF Report"): try: pdf_file = generate_pdf_report(df, lab_site, equipment_type, [date_start, date_end]) with open(pdf_file, "rb") as f: st.download_button("Download PDF", f, file_name="LabOps_Report.pdf", mime="application/pdf") except Exception as e: st.error(f"Failed to generate PDF: {e}") if __name__ == "__main__": main()