import pandas as pd from transformers import pipeline import logging logger = logging.getLogger(__name__) def detect_anomalies(df): """Detect anomalies in log data using a Hugging Face model.""" logger.info("Detecting anomalies...") try: detector = pipeline( "text-classification", model="prajjwal1/bert-tiny", tokenizer="prajjwal1/bert-tiny", clean_up_tokenization_spaces=True ) df["text"] = df["status"] + " Usage:" + df["usage_count"].astype(str) results = detector(df["text"].tolist()) df["anomaly"] = [r["label"] for r in results] anomalies = df[df["anomaly"] == "POSITIVE"] logger.info(f"Detected {len(anomalies)} anomalies.") return anomalies except Exception as e: logger.error(f"Failed to detect anomalies: {e}") raise