Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,95 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
st.set_page_config(page_title="LabOps Dashboard", layout="wide")
|
10 |
-
st.title("π Multi-Device LabOps Dashboard")
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
st.subheader("π Uploaded Logs")
|
18 |
-
st.dataframe(df.head())
|
19 |
-
|
20 |
-
st.subheader("π Daily Usage Chart")
|
21 |
-
st.pyplot(plot_usage(df))
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
st.
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
st.success("PDF report generated and saved.")
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
from datetime import datetime, timedelta
|
5 |
+
from simple_salesforce import Salesforce
|
6 |
+
from transformers import pipeline
|
7 |
+
from reportlab.lib.pagesizes import letter
|
8 |
+
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph
|
9 |
+
from reportlab.lib import colors
|
10 |
+
from reportlab.lib.styles import getSampleStyleSheet
|
11 |
+
from utils import fetch_salesforce_data, detect_anomalies, generate_pdf_report
|
12 |
|
13 |
+
# Streamlit app configuration
|
14 |
st.set_page_config(page_title="LabOps Dashboard", layout="wide")
|
|
|
15 |
|
16 |
+
# Salesforce authentication (replace with your credentials)
|
17 |
+
sf = Salesforce(
|
18 |
+
username=st.secrets["sf_username"],
|
19 |
+
password=st.secrets["sf_password"],
|
20 |
+
security_token=st.secrets["sf_security_token"]
|
21 |
+
)
|
22 |
|
23 |
+
# Initialize Hugging Face anomaly detection pipeline
|
24 |
+
anomaly_detector = pipeline("text-classification", model="bert-base-uncased", tokenizer="bert-base-uncased")
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
def main():
|
27 |
+
st.title("Multi-Device LabOps Dashboard")
|
28 |
+
|
29 |
+
# Filters
|
30 |
+
col1, col2, col3 = st.columns(3)
|
31 |
+
with col1:
|
32 |
+
lab_site = st.selectbox("Select Lab Site", ["All", "Lab1", "Lab2", "Lab3"])
|
33 |
+
with col2:
|
34 |
+
equipment_type = st.selectbox("Equipment Type", ["All", "Cell Analyzer", "Weight Log", "UV Verification"])
|
35 |
+
with col3:
|
36 |
+
date_range = st.date_input("Date Range", [datetime.now() - timedelta(days=7), datetime.now()])
|
37 |
+
|
38 |
+
# Fetch data from Salesforce
|
39 |
+
query = f"""
|
40 |
+
SELECT Equipment__c, Log_Timestamp__c, Status__c, Usage_Count__c
|
41 |
+
FROM SmartLog__c
|
42 |
+
WHERE Log_Timestamp__c >= {date_range[0].strftime('%Y-%m-%d')}
|
43 |
+
AND Log_Timestamp__c <= {date_range[1].strftime('%Y-%m-%d')}
|
44 |
+
"""
|
45 |
+
if lab_site != "All":
|
46 |
+
query += f" AND Lab__c = '{lab_site}'"
|
47 |
+
if equipment_type != "All":
|
48 |
+
query += f" AND Equipment_Type__c = '{equipment_type}'"
|
49 |
+
|
50 |
+
data = fetch_salesforce_data(sf, query)
|
51 |
+
df = pd.DataFrame(data)
|
52 |
+
|
53 |
+
if df.empty:
|
54 |
+
st.warning("No data available for the selected filters.")
|
55 |
+
return
|
56 |
+
|
57 |
+
# Detect anomalies using Hugging Face
|
58 |
+
df["Anomaly"] = df["Status__c"].apply(lambda x: detect_anomalies(x, anomaly_detector))
|
59 |
+
|
60 |
+
# Device Cards
|
61 |
+
st.subheader("Device Status")
|
62 |
+
for equipment in df["Equipment__c"].unique():
|
63 |
+
device_data = df[df["Equipment__c"] == equipment]
|
64 |
+
latest_log = device_data.iloc[-1]
|
65 |
+
anomaly = "β οΈ Anomaly" if latest_log["Anomaly"] == "POSITIVE" else "β
Normal"
|
66 |
+
st.markdown(f"""
|
67 |
+
**{equipment}** | Health: {latest_log["Status__c"]} | Usage: {latest_log["Usage_Count__c"]} | Last Log: {latest_log["Log_Timestamp__c"]} | {anomaly}
|
68 |
+
""")
|
69 |
+
|
70 |
+
# Usage Chart
|
71 |
+
st.subheader("Usage Trends")
|
72 |
+
fig = px.line(df, x="Log_Timestamp__c", y="Usage_Count__c", color="Equipment__c", title="Daily Usage Trends")
|
73 |
+
st.plotly_chart(fig, use_container_width=True)
|
74 |
+
|
75 |
+
# Downtime Chart
|
76 |
+
downtime_df = df[df["Status__c"] == "Down"]
|
77 |
+
if not downtime_df.empty:
|
78 |
+
fig_downtime = px.histogram(downtime_df, x="Log_Timestamp__c", color="Equipment__c", title="Downtime Patterns")
|
79 |
+
st.plotly_chart(fig_downtime, use_container_width=True)
|
80 |
+
|
81 |
+
# AMC Reminders
|
82 |
+
st.subheader("AMC Reminders")
|
83 |
+
amc_query = "SELECT Equipment__c, AMC_Expiry_Date__c FROM Equipment__c WHERE AMC_Expiry_Date__c <= NEXT_N_DAYS:14"
|
84 |
+
amc_data = fetch_salesforce_data(sf, amc_query)
|
85 |
+
for record in amc_data:
|
86 |
+
st.write(f"Equipment {record['Equipment__c']} - AMC Expiry: {record['AMC_Expiry_Date__c']}")
|
87 |
+
|
88 |
+
# Export PDF
|
89 |
+
if st.button("Export PDF Report"):
|
90 |
+
pdf_file = generate_pdf_report(df, lab_site, equipment_type, date_range)
|
91 |
+
with open(pdf_file, "rb") as f:
|
92 |
+
st.download_button("Download PDF", f, file_name="LabOps_Report.pdf")
|
93 |
|
94 |
+
if __name__ == "__main__":
|
95 |
+
main()
|
|