Update utils.py
Browse files
utils.py
CHANGED
@@ -5,20 +5,25 @@ from reportlab.lib import colors
|
|
5 |
from reportlab.lib.styles import getSampleStyleSheet
|
6 |
import pandas as pd
|
7 |
from datetime import datetime
|
|
|
8 |
|
9 |
-
def fetch_salesforce_data(sf: Salesforce, query: str) -> list:
|
10 |
-
"""Fetch data from Salesforce using SOQL query."""
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def detect_anomalies(log_text: str, anomaly_detector) -> str:
|
19 |
"""Detect anomalies in log text using Hugging Face model."""
|
20 |
try:
|
21 |
-
result = anomaly_detector(log_text)
|
22 |
return result[0]["label"] # Returns 'POSITIVE' for anomaly, 'NEGATIVE' for normal
|
23 |
except Exception as e:
|
24 |
print(f"Error detecting anomaly: {e}")
|
@@ -40,11 +45,12 @@ def generate_pdf_report(df: pd.DataFrame, lab_site: str, equipment_type: str, da
|
|
40 |
# Data Table
|
41 |
data = [["Equipment", "Timestamp", "Status", "Usage Count", "Anomaly"]]
|
42 |
for _, row in df.iterrows():
|
|
|
43 |
data.append([
|
44 |
row["Equipment__c"],
|
45 |
-
|
46 |
row["Status__c"],
|
47 |
-
row["Usage_Count__c"],
|
48 |
row["Anomaly"]
|
49 |
])
|
50 |
|
|
|
5 |
from reportlab.lib.styles import getSampleStyleSheet
|
6 |
import pandas as pd
|
7 |
from datetime import datetime
|
8 |
+
import time
|
9 |
|
10 |
+
def fetch_salesforce_data(sf: Salesforce, query: str, retries=3) -> list:
|
11 |
+
"""Fetch data from Salesforce using SOQL query with retry logic."""
|
12 |
+
for attempt in range(retries):
|
13 |
+
try:
|
14 |
+
result = sf.query_all(query)
|
15 |
+
return result["records"]
|
16 |
+
except Exception as e:
|
17 |
+
if attempt == retries - 1:
|
18 |
+
print(f"Error fetching Salesforce data after {retries} attempts: {e}")
|
19 |
+
return []
|
20 |
+
time.sleep(2) # Wait before retrying
|
21 |
+
return []
|
22 |
|
23 |
def detect_anomalies(log_text: str, anomaly_detector) -> str:
|
24 |
"""Detect anomalies in log text using Hugging Face model."""
|
25 |
try:
|
26 |
+
result = anomaly_detector(log_text, clean_up_tokenization_spaces=True)
|
27 |
return result[0]["label"] # Returns 'POSITIVE' for anomaly, 'NEGATIVE' for normal
|
28 |
except Exception as e:
|
29 |
print(f"Error detecting anomaly: {e}")
|
|
|
45 |
# Data Table
|
46 |
data = [["Equipment", "Timestamp", "Status", "Usage Count", "Anomaly"]]
|
47 |
for _, row in df.iterrows():
|
48 |
+
timestamp = row["Log_Timestamp__c"].strftime('%Y-%m-%d %H:%M:%S') if pd.notnull(row["Log_Timestamp__c"]) else "N/A"
|
49 |
data.append([
|
50 |
row["Equipment__c"],
|
51 |
+
timestamp,
|
52 |
row["Status__c"],
|
53 |
+
str(row["Usage_Count__c"]),
|
54 |
row["Anomaly"]
|
55 |
])
|
56 |
|