MaheshP98 commited on
Commit
08a746f
·
verified ·
1 Parent(s): a7b0f1e

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +17 -11
utils.py CHANGED
@@ -5,20 +5,25 @@ from reportlab.lib import colors
5
  from reportlab.lib.styles import getSampleStyleSheet
6
  import pandas as pd
7
  from datetime import datetime
 
8
 
9
- def fetch_salesforce_data(sf: Salesforce, query: str) -> list:
10
- """Fetch data from Salesforce using SOQL query."""
11
- try:
12
- result = sf.query_all(query)
13
- return result["records"]
14
- except Exception as e:
15
- print(f"Error fetching Salesforce data: {e}")
16
- return []
 
 
 
 
17
 
18
  def detect_anomalies(log_text: str, anomaly_detector) -> str:
19
  """Detect anomalies in log text using Hugging Face model."""
20
  try:
21
- result = anomaly_detector(log_text)
22
  return result[0]["label"] # Returns 'POSITIVE' for anomaly, 'NEGATIVE' for normal
23
  except Exception as e:
24
  print(f"Error detecting anomaly: {e}")
@@ -40,11 +45,12 @@ def generate_pdf_report(df: pd.DataFrame, lab_site: str, equipment_type: str, da
40
  # Data Table
41
  data = [["Equipment", "Timestamp", "Status", "Usage Count", "Anomaly"]]
42
  for _, row in df.iterrows():
 
43
  data.append([
44
  row["Equipment__c"],
45
- row["Log_Timestamp__c"],
46
  row["Status__c"],
47
- row["Usage_Count__c"],
48
  row["Anomaly"]
49
  ])
50
 
 
5
  from reportlab.lib.styles import getSampleStyleSheet
6
  import pandas as pd
7
  from datetime import datetime
8
+ import time
9
 
10
+ def fetch_salesforce_data(sf: Salesforce, query: str, retries=3) -> list:
11
+ """Fetch data from Salesforce using SOQL query with retry logic."""
12
+ for attempt in range(retries):
13
+ try:
14
+ result = sf.query_all(query)
15
+ return result["records"]
16
+ except Exception as e:
17
+ if attempt == retries - 1:
18
+ print(f"Error fetching Salesforce data after {retries} attempts: {e}")
19
+ return []
20
+ time.sleep(2) # Wait before retrying
21
+ return []
22
 
23
  def detect_anomalies(log_text: str, anomaly_detector) -> str:
24
  """Detect anomalies in log text using Hugging Face model."""
25
  try:
26
+ result = anomaly_detector(log_text, clean_up_tokenization_spaces=True)
27
  return result[0]["label"] # Returns 'POSITIVE' for anomaly, 'NEGATIVE' for normal
28
  except Exception as e:
29
  print(f"Error detecting anomaly: {e}")
 
45
  # Data Table
46
  data = [["Equipment", "Timestamp", "Status", "Usage Count", "Anomaly"]]
47
  for _, row in df.iterrows():
48
+ timestamp = row["Log_Timestamp__c"].strftime('%Y-%m-%d %H:%M:%S') if pd.notnull(row["Log_Timestamp__c"]) else "N/A"
49
  data.append([
50
  row["Equipment__c"],
51
+ timestamp,
52
  row["Status__c"],
53
+ str(row["Usage_Count__c"]),
54
  row["Anomaly"]
55
  ])
56