import gradio as gr import numpy as np import torch from diffusers import StableDiffusionInpaintPipeline from PIL import Image from segment_anything import SamPredictor, sam_model_registry device="cpu" sam_checkpoint = "Weight/sam_vit_h_4b8939.pth" model_type = "vit_h" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) sam.to(device) predictor = SamPredictor(sam) pipe = StableDiffusionInpaintPipeline.from_pretrained( "stabilityai/stable-diffusion-2-inpainting", torch_dtype=torch.float32 ) pipe = pipe.to(device) selected_pixels = [] with gr.Blocks() as demo: with gr.Row(): input_img = gr.Image(label="Input") mask_img = gr.Image(label="Mas") output_img = gr.Image(label="Output") with gr.Blocks(): prompt_text = gr.Textbox(lines=1, label="Prompt") with gr.Blocks(): submit = gr.Button("Submit") def generate_mask(image, evt:gr.SelectData): input_labels = np.ones(len(selected_pixels)) selected_pixels.append(evt.index) predictor.set_image(image) input_points = np.array(selected_pixels) input_labels = np.ones(input_labels.shape[0]) mask, _, _ = predictor.predict( point_coords= input_points, point_labels= input_labels, multimask_output=False ) # (n, sz, sz) mask = Image.fromarray(mask[0, : , :]) mask = mask.resize((512, 512)) # Resize the mask to (512, 512) mask = np.expand_dims(mask, axis=2) return mask def inpaint(image, mask, prompt): image = Image.fromarray(image) mask = Image.fromarray(mask) image = image.resize((512,512)) mask = mask.resize((512,512)) output = pipe( prompt=prompt, image=image, mask_image=mask, ).images[0] return output input_img.select(generate_mask, [input_img], [mask_img]) submit.click( inpaint, inputs=[input_img, mask_img, prompt_text], outputs=[output_img], ) if __name__ == "__main__": demo.launch()