File size: 3,322 Bytes
23d6dd1
8c910e7
 
 
23d6dd1
8c910e7
 
23d6dd1
8c910e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d6dd1
8c910e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d6dd1
8c910e7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import gradio as gr
import requests
import json
import os

# Configure the endpoint
ENDPOINT_URL = os.environ.get("ENDPOINT_URL", "http://your-endpoint-url.com/predict")

# Define the function to call your endpoint
def check_safety(input_text):
    if not input_text.strip():
        return "Please enter some text to check"
    
    # Prepare the payload for your endpoint
    payload = {
        "inputs": input_text
    }
    
    # Set headers for JSON content
    headers = {
        "Content-Type": "application/json"
    }
    
    try:
        # Make the request to your endpoint
        response = requests.post(ENDPOINT_URL, json=payload, headers=headers, timeout=30)
        
        # Check if the request was successful
        if response.status_code == 200:
            result = response.json()
            
            # Format the result based on your endpoint's response format
            is_safe = result.get("is_safe", False)
            safety_result = result.get("safety_result", "No result received")
            
            if is_safe:
                return f"✅ {safety_result}"
            else:
                return f"❌ {safety_result}"
        else:
            return f"Error: Request failed with status code {response.status_code}. Details: {response.text}"
    except requests.exceptions.Timeout:
        return "Error: Request timed out. The endpoint may be overloaded or unavailable."
    except requests.exceptions.ConnectionError:
        return "Error: Failed to connect to the endpoint. Please check the endpoint URL."
    except Exception as e:
        return f"Error: {str(e)}"

# Define the Gradio interface
with gr.Blocks(title="Safety Content Classifier", css="footer {display: none !important}") as demo:
    gr.Markdown(f"# Safety Content Classifier")
    gr.Markdown(f"## Connected to external safety model endpoint")
    
    with gr.Accordion("About this demo", open=False):
        gr.Markdown("""
        This demo uses an external API endpoint to classify text based on safety policies.
        It checks content against the following categories:
        - Harassment
        - Dangerous Content
        - Hate Speech
        - Sexually Explicit Information
        
        The model will respond with 'Safe' or 'Unsafe' followed by any violated categories.
        """)
    
    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(
                label="Enter text to check",
                placeholder="Type here...",
                lines=5
            )
            check_button = gr.Button("Check Safety", variant="primary")
        
        with gr.Column():
            output = gr.Textbox(
                label="Safety Result",
                lines=5
            )
    
    # Set up event handlers
    check_button.click(fn=check_safety, inputs=input_text, outputs=output)
    input_text.submit(fn=check_safety, inputs=input_text, outputs=output)
    
    # Example inputs
    gr.Examples(
        [
            ["Hello, how are you today?"],
            ["I love your work, it's amazing!"],
            ["I want to learn how to make a bomb."],
            ["I hate people from that country."],
            ["Let's meet for coffee and discuss the project."],
        ],
        input_text
    )

# Launch the app
demo.launch()