Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,17 @@ import random
|
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import InferenceClient
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Optional: Enable scraping if your site is deployed.
|
8 |
ENABLE_SCRAPING = False
|
9 |
SITE_URL = "https://your-agri-future-site.com"
|
10 |
|
11 |
-
# Global variable to hold scraped content
|
12 |
knowledge_base = ""
|
13 |
|
14 |
# --- Optional: Scraping Functionality ---
|
@@ -23,10 +29,10 @@ if ENABLE_SCRAPING:
|
|
23 |
options.headless = True # Run browser in headless mode.
|
24 |
driver = webdriver.Chrome(options=options)
|
25 |
driver.get(url)
|
26 |
-
# Use explicit waits in production
|
27 |
time.sleep(5)
|
28 |
try:
|
29 |
-
# Customize the selector
|
30 |
content_element = driver.find_element(By.ID, "content")
|
31 |
page_text = content_element.text
|
32 |
except Exception as e:
|
@@ -43,59 +49,106 @@ else:
|
|
43 |
|
44 |
# --- Multilingual Helpers ---
|
45 |
|
46 |
-
# Language-specific greeting detection
|
47 |
def is_greeting(query: str, lang: str) -> bool:
|
48 |
greetings = {
|
49 |
"en": ["hello", "hi", "hey", "good morning", "good afternoon", "good evening"],
|
50 |
"fr": ["bonjour", "salut", "coucou", "bonsoir"],
|
51 |
"am": ["ሰላም", "ሰላም እንደምን", "እንዴት"]
|
52 |
}
|
53 |
-
# Retrieve greetings for the provided language; default to English if unavailable.
|
54 |
greet_list = greetings.get(lang, greetings["en"])
|
55 |
-
# For
|
56 |
if lang != "am":
|
57 |
query = query.lower()
|
58 |
return any(query.startswith(greet) for greet in greet_list)
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
"
|
67 |
-
"
|
68 |
-
|
69 |
-
"fr":
|
70 |
-
"
|
71 |
-
"
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
"
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
}
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
# Helper to determine if a query is relevant to our domain (English check only; can be expanded).
|
85 |
def is_domain_query(query: str) -> bool:
|
|
|
|
|
|
|
86 |
domain_keywords = [
|
87 |
"agriculture", "farming", "crop", "agro", "investment", "soil",
|
88 |
"irrigation", "harvest", "organic", "sustainable", "agribusiness",
|
89 |
-
"livestock",
|
90 |
-
"
|
|
|
|
|
|
|
91 |
]
|
92 |
return any(re.search(r"\b" + keyword + r"\b", query, re.IGNORECASE) for keyword in domain_keywords)
|
93 |
|
94 |
def retrieve_relevant_snippet(query: str, text: str, max_length: int = 300) -> str:
|
95 |
"""
|
96 |
-
|
97 |
-
containing domain keywords from the query.
|
98 |
-
Returns a snippet limited to max_length characters.
|
99 |
"""
|
100 |
sentences = re.split(r'[.?!]', text)
|
101 |
for sentence in sentences:
|
@@ -105,71 +158,59 @@ def retrieve_relevant_snippet(query: str, text: str, max_length: int = 300) -> s
|
|
105 |
return ""
|
106 |
|
107 |
# --- Chat Assistant Response Function ---
|
108 |
-
|
109 |
-
|
110 |
-
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, language):
|
111 |
-
# language is expected as a string code: "en", "fr", or "am"
|
112 |
-
|
113 |
-
# Check for a greeting in the appropriate language.
|
114 |
if is_greeting(message, language):
|
115 |
-
|
116 |
-
"en": "Hello! How can I assist you today with your agriculture or agro-investment inquiries?",
|
117 |
-
"fr": "Bonjour! Comment puis-je vous aider aujourd'hui en matière d'agriculture ou d'investissements agroalimentaires?",
|
118 |
-
"am": "ሰላም! ዛሬ ስለ ግብርና ወይም ስለ አገልግሎት ስርዓተ-ቢዝነስ ጥያቄዎች እንዴት ልረዳዎት?"
|
119 |
-
}
|
120 |
-
yield greetings.get(language, greetings["en"])
|
121 |
return
|
122 |
|
123 |
-
# If
|
124 |
if not is_domain_query(message):
|
125 |
-
yield
|
126 |
return
|
127 |
|
128 |
-
# Build conversation context
|
129 |
-
|
130 |
for user_msg, assistant_msg in history:
|
131 |
if user_msg:
|
132 |
-
|
133 |
if assistant_msg:
|
134 |
-
|
135 |
-
|
136 |
-
#
|
137 |
if knowledge_base:
|
138 |
snippet = retrieve_relevant_snippet(message, knowledge_base)
|
139 |
if snippet:
|
140 |
-
retrieval_context = f"Reference
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
messages_context,
|
150 |
max_tokens=max_tokens,
|
151 |
stream=True,
|
152 |
temperature=temperature,
|
153 |
top_p=top_p,
|
154 |
):
|
155 |
-
token =
|
156 |
-
|
157 |
-
yield
|
158 |
|
159 |
# --- Gradio Chat Interface ---
|
160 |
-
|
161 |
-
# The language selection dropdown uses language codes: "en" for English, "fr" for French, "am" for Amharic.
|
162 |
demo = gr.ChatInterface(
|
163 |
-
respond,
|
164 |
additional_inputs=[
|
165 |
gr.Textbox(
|
166 |
-
value="You are AgriFutureBot,
|
167 |
label="System Message"
|
168 |
),
|
169 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
|
170 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
171 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
|
172 |
-
gr.Dropdown(choices=["en", "fr", "am"], value="en", label="Language
|
173 |
],
|
174 |
)
|
175 |
|
|
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import InferenceClient
|
6 |
|
7 |
+
# Initialize the InferenceClient (update the model and token as needed)
|
8 |
+
client = InferenceClient(
|
9 |
+
model="HuggingFaceH4/zephyr-7b-beta", # Change to your model if needed
|
10 |
+
token="your_huggingface_api_token" # Replace with your Hugging Face API token
|
11 |
+
)
|
12 |
+
|
13 |
# Optional: Enable scraping if your site is deployed.
|
14 |
ENABLE_SCRAPING = False
|
15 |
SITE_URL = "https://your-agri-future-site.com"
|
16 |
|
17 |
+
# Global variable to hold scraped content.
|
18 |
knowledge_base = ""
|
19 |
|
20 |
# --- Optional: Scraping Functionality ---
|
|
|
29 |
options.headless = True # Run browser in headless mode.
|
30 |
driver = webdriver.Chrome(options=options)
|
31 |
driver.get(url)
|
32 |
+
# Use explicit waits in production; here we use a basic sleep.
|
33 |
time.sleep(5)
|
34 |
try:
|
35 |
+
# Customize the selector based on your site's HTML structure.
|
36 |
content_element = driver.find_element(By.ID, "content")
|
37 |
page_text = content_element.text
|
38 |
except Exception as e:
|
|
|
49 |
|
50 |
# --- Multilingual Helpers ---
|
51 |
|
|
|
52 |
def is_greeting(query: str, lang: str) -> bool:
|
53 |
greetings = {
|
54 |
"en": ["hello", "hi", "hey", "good morning", "good afternoon", "good evening"],
|
55 |
"fr": ["bonjour", "salut", "coucou", "bonsoir"],
|
56 |
"am": ["ሰላም", "ሰላም እንደምን", "እንዴት"]
|
57 |
}
|
|
|
58 |
greet_list = greetings.get(lang, greetings["en"])
|
59 |
+
# For languages using Latin script, convert the query to lower case.
|
60 |
if lang != "am":
|
61 |
query = query.lower()
|
62 |
return any(query.startswith(greet) for greet in greet_list)
|
63 |
|
64 |
+
def generate_dynamic_greeting(language: str) -> str:
|
65 |
+
"""
|
66 |
+
Generate a dynamic, context-relevant greeting using the Hugging Face Inference API.
|
67 |
+
"""
|
68 |
+
system_prompts = {
|
69 |
+
"en": (
|
70 |
+
"You are a friendly chatbot specializing in agriculture and agro-investment. "
|
71 |
+
"A user just greeted you. Generate a warm, dynamic greeting message in English that is context-aware and encourages discussion about agriculture or agro-investment."
|
72 |
+
),
|
73 |
+
"fr": (
|
74 |
+
"Vous êtes un chatbot chaleureux spécialisé dans l'agriculture et les investissements agroalimentaires. "
|
75 |
+
"Un utilisateur vient de vous saluer. Générez un message de salutation dynamique et chaleureux en français, en restant pertinent par rapport à l'agriculture ou aux investissements agroalimentaires."
|
76 |
+
),
|
77 |
+
"am": (
|
78 |
+
"እርስዎ በግብርናና በአገልግሎት ስርዓተ-ቢዝነስ ውስጥ ባለሙያ ቻትቦት ናቸው። "
|
79 |
+
"ተጠቃሚው በአማርኛ ሰላም መልእክት አስቀድመዋል። "
|
80 |
+
"በአማርኛ ተዛማጅ እና ትክክለኛ የሆነ ሰላም መልእክት ፍጥረት ያድርጉ።"
|
81 |
+
)
|
82 |
+
}
|
83 |
+
prompt = system_prompts.get(language, system_prompts["en"])
|
84 |
+
messages = [{"role": "system", "content": prompt}]
|
85 |
+
response = client.chat_completion(
|
86 |
+
messages,
|
87 |
+
max_tokens=80,
|
88 |
+
stream=False,
|
89 |
+
temperature=0.7,
|
90 |
+
top_p=0.95,
|
91 |
+
)
|
92 |
+
try:
|
93 |
+
greeting_message = response.choices[0].message.content
|
94 |
+
except AttributeError:
|
95 |
+
greeting_message = str(response)
|
96 |
+
return greeting_message.strip()
|
97 |
+
|
98 |
+
def generate_dynamic_out_of_scope_message(language: str) -> str:
|
99 |
+
"""
|
100 |
+
Generate a dynamic out-of-scope message using the Hugging Face Inference API.
|
101 |
+
"""
|
102 |
+
system_prompts = {
|
103 |
+
"en": (
|
104 |
+
"You are a helpful chatbot specializing in agriculture and agro-investment. "
|
105 |
+
"A user just asked a question that is not related to these topics. "
|
106 |
+
"Generate a friendly, varied, and intelligent out-of-scope response in English that kindly encourages the user to ask about agriculture or agro-investment."
|
107 |
+
),
|
108 |
+
"fr": (
|
109 |
+
"Vous êtes un chatbot utile spécialisé dans l'agriculture et les investissements agroalimentaires. "
|
110 |
+
"Un utilisateur vient de poser une question qui ne concerne pas ces sujets. "
|
111 |
+
"Générez une réponse élégante, variée et intelligente en français pour indiquer que la question est hors de portée, en invitant l'utilisateur à poser une question sur l'agriculture ou les investissements agroalimentaires."
|
112 |
+
),
|
113 |
+
"am": (
|
114 |
+
"እርስዎ በግብርናና በአገልግሎት ስርዓተ-ቢዝነስ ውስጥ በተለይ የተሞሉ ቻትቦት ናቸው። "
|
115 |
+
"ተጠቃሚው ለግብርና ወይም ለአገልግሎት ስርዓተ-ቢዝነስ ተያይዞ ያልሆነ ጥያቄ አስቀድመዋል። "
|
116 |
+
"በአማርኛ በተለያዩ መልኩ የውጭ ክፍል መልእክት ፍጥረት ያድርጉ፤ እባኮትን ተጠቃሚውን ለግብርና ወይም ለአገልግሎት ጥያቄዎች ለመጠየቅ ያነጋግሩ።"
|
117 |
+
)
|
118 |
}
|
119 |
+
prompt = system_prompts.get(language, system_prompts["en"])
|
120 |
+
messages = [{"role": "system", "content": prompt}]
|
121 |
+
response = client.chat_completion(
|
122 |
+
messages,
|
123 |
+
max_tokens=80,
|
124 |
+
stream=False,
|
125 |
+
temperature=0.7,
|
126 |
+
top_p=0.95,
|
127 |
+
)
|
128 |
+
try:
|
129 |
+
out_message = response.choices[0].message.content
|
130 |
+
except AttributeError:
|
131 |
+
out_message = str(response)
|
132 |
+
return out_message.strip()
|
133 |
|
|
|
134 |
def is_domain_query(query: str) -> bool:
|
135 |
+
"""
|
136 |
+
Check if a query relates to agriculture or agro-investment.
|
137 |
+
"""
|
138 |
domain_keywords = [
|
139 |
"agriculture", "farming", "crop", "agro", "investment", "soil",
|
140 |
"irrigation", "harvest", "organic", "sustainable", "agribusiness",
|
141 |
+
"livestock", "agroalimentaire", "agriculture durable",
|
142 |
+
"greenhouse", "horticulture", "pesticide", "fertilizer",
|
143 |
+
"rural development", "food production", "crop yield", "farm equipment",
|
144 |
+
"agronomy", "farming techniques", "organic farming", "agro-tech",
|
145 |
+
"farm management", "agrifood"
|
146 |
]
|
147 |
return any(re.search(r"\b" + keyword + r"\b", query, re.IGNORECASE) for keyword in domain_keywords)
|
148 |
|
149 |
def retrieve_relevant_snippet(query: str, text: str, max_length: int = 300) -> str:
|
150 |
"""
|
151 |
+
Retrieve a relevant snippet from the text based on the query.
|
|
|
|
|
152 |
"""
|
153 |
sentences = re.split(r'[.?!]', text)
|
154 |
for sentence in sentences:
|
|
|
158 |
return ""
|
159 |
|
160 |
# --- Chat Assistant Response Function ---
|
161 |
+
def respond(message, history: list, system_message, max_tokens, temperature, top_p, language):
|
162 |
+
# Check for a greeting.
|
|
|
|
|
|
|
|
|
163 |
if is_greeting(message, language):
|
164 |
+
yield generate_dynamic_greeting(language)
|
|
|
|
|
|
|
|
|
|
|
165 |
return
|
166 |
|
167 |
+
# If query is out of domain, generate an out-of-scope message.
|
168 |
if not is_domain_query(message):
|
169 |
+
yield generate_dynamic_out_of_scope_message(language)
|
170 |
return
|
171 |
|
172 |
+
# Build conversation context from the system message and conversation history.
|
173 |
+
messages_list = [{"role": "system", "content": system_message}]
|
174 |
for user_msg, assistant_msg in history:
|
175 |
if user_msg:
|
176 |
+
messages_list.append({"role": "user", "content": user_msg})
|
177 |
if assistant_msg:
|
178 |
+
messages_list.append({"role": "assistant", "content": assistant_msg})
|
179 |
+
|
180 |
+
# Optionally add a relevant snippet from the scraped content (if available).
|
181 |
if knowledge_base:
|
182 |
snippet = retrieve_relevant_snippet(message, knowledge_base)
|
183 |
if snippet:
|
184 |
+
retrieval_context = f"Reference from Agri Future Investment platform: {snippet}"
|
185 |
+
messages_list.insert(0, {"role": "system", "content": retrieval_context})
|
186 |
+
|
187 |
+
messages_list.append({"role": "user", "content": message})
|
188 |
+
|
189 |
+
# Generate the assistant's answer by streaming responses.
|
190 |
+
response_text = ""
|
191 |
+
for partial_response in client.chat_completion(
|
192 |
+
messages_list,
|
|
|
193 |
max_tokens=max_tokens,
|
194 |
stream=True,
|
195 |
temperature=temperature,
|
196 |
top_p=top_p,
|
197 |
):
|
198 |
+
token = partial_response.choices[0].delta.content
|
199 |
+
response_text += token
|
200 |
+
yield response_text
|
201 |
|
202 |
# --- Gradio Chat Interface ---
|
|
|
|
|
203 |
demo = gr.ChatInterface(
|
204 |
+
fn=respond,
|
205 |
additional_inputs=[
|
206 |
gr.Textbox(
|
207 |
+
value="You are AgriFutureBot, a specialized assistant for agriculture and agro-investment insights.",
|
208 |
label="System Message"
|
209 |
),
|
210 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
|
211 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
212 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
|
213 |
+
gr.Dropdown(choices=["en", "fr", "am"], value="en", label="Language")
|
214 |
],
|
215 |
)
|
216 |
|