Update app.py
Browse files
app.py
CHANGED
@@ -23,10 +23,10 @@ if ENABLE_SCRAPING:
|
|
23 |
options.headless = True # Run browser in headless mode.
|
24 |
driver = webdriver.Chrome(options=options)
|
25 |
driver.get(url)
|
26 |
-
# Use explicit waits in production
|
27 |
time.sleep(5)
|
28 |
try:
|
29 |
-
# Customize the selector
|
30 |
content_element = driver.find_element(By.ID, "content")
|
31 |
page_text = content_element.text
|
32 |
except Exception as e:
|
@@ -43,135 +43,66 @@ else:
|
|
43 |
|
44 |
# --- Multilingual Helpers ---
|
45 |
|
46 |
-
# Language-specific greeting detection
|
47 |
def is_greeting(query: str, lang: str) -> bool:
|
48 |
greetings = {
|
49 |
"en": ["hello", "hi", "hey", "good morning", "good afternoon", "good evening"],
|
50 |
"fr": ["bonjour", "salut", "coucou", "bonsoir"],
|
51 |
"am": ["ሰላም", "ሰላም እንደምን", "እንዴት"]
|
52 |
}
|
53 |
-
# Retrieve greetings for the provided language; default to English if unavailable.
|
54 |
greet_list = greetings.get(lang, greetings["en"])
|
55 |
-
# For
|
56 |
if lang != "am":
|
57 |
query = query.lower()
|
58 |
return any(query.startswith(greet) for greet in greet_list)
|
59 |
|
60 |
-
#
|
61 |
-
def
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
"
|
66 |
-
"
|
67 |
-
"
|
68 |
-
|
69 |
-
"fr":
|
70 |
-
"
|
71 |
-
"
|
72 |
-
"
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
"
|
77 |
-
"
|
78 |
-
|
79 |
-
]
|
80 |
}
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
#
|
85 |
def is_domain_query(query: str) -> bool:
|
86 |
domain_keywords = [
|
87 |
"agriculture", "farming", "crop", "agro", "investment", "soil",
|
88 |
"irrigation", "harvest", "organic", "sustainable", "agribusiness",
|
89 |
-
"livestock",
|
90 |
-
"agriculture", "agroalimentaire", "agriculture durable" # French terms can also be included
|
91 |
]
|
92 |
return any(re.search(r"\b" + keyword + r"\b", query, re.IGNORECASE) for keyword in domain_keywords)
|
93 |
|
94 |
def retrieve_relevant_snippet(query: str, text: str, max_length: int = 300) -> str:
|
95 |
-
"""
|
96 |
-
A simple retrieval function that searches for sentences in the text
|
97 |
-
containing domain keywords from the query.
|
98 |
-
Returns a snippet limited to max_length characters.
|
99 |
-
"""
|
100 |
sentences = re.split(r'[.?!]', text)
|
101 |
-
for sentence in sentences
|
102 |
-
if is_domain_query(sentence) and all(word.lower() in sentence.lower() for word in query.split()):
|
103 |
-
snippet = sentence.strip()
|
104 |
-
return snippet[:max_length] + "..." if len(snippet) > max_length else snippet
|
105 |
-
return ""
|
106 |
-
|
107 |
-
# --- Chat Assistant Response Function ---
|
108 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
109 |
-
|
110 |
-
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, language):
|
111 |
-
# language is expected as a string code: "en", "fr", or "am"
|
112 |
-
|
113 |
-
# Check for a greeting in the appropriate language.
|
114 |
-
if is_greeting(message, language):
|
115 |
-
greetings = {
|
116 |
-
"en": "Hello! How can I assist you today with your agriculture or agro-investment inquiries?",
|
117 |
-
"fr": "Bonjour! Comment puis-je vous aider aujourd'hui en matière d'agriculture ou d'investissements agroalimentaires?",
|
118 |
-
"am": "ሰላም! ዛሬ ስለ ግብርና ወይም ስለ አገልግሎት ስርዓተ-ቢዝነስ ጥያቄዎች እንዴት ልረዳዎት?"
|
119 |
-
}
|
120 |
-
yield greetings.get(language, greetings["en"])
|
121 |
-
return
|
122 |
-
|
123 |
-
# If the query is not recognized as domain related, return an out-of-scope message.
|
124 |
-
if not is_domain_query(message):
|
125 |
-
yield get_out_of_scope_message(language)
|
126 |
-
return
|
127 |
-
|
128 |
-
# Build conversation context starting with the system message.
|
129 |
-
messages_context = [{"role": "system", "content": system_message}]
|
130 |
-
for user_msg, assistant_msg in history:
|
131 |
-
if user_msg:
|
132 |
-
messages_context.append({"role": "user", "content": user_msg})
|
133 |
-
if assistant_msg:
|
134 |
-
messages_context.append({"role": "assistant", "content": assistant_msg})
|
135 |
-
|
136 |
-
# Optional: Append retrieved context from scraped site content.
|
137 |
-
if knowledge_base:
|
138 |
-
snippet = retrieve_relevant_snippet(message, knowledge_base)
|
139 |
-
if snippet:
|
140 |
-
retrieval_context = f"Reference info from Agri Future Investment platform: {snippet}"
|
141 |
-
messages_context.insert(0, {"role": "system", "content": retrieval_context})
|
142 |
-
|
143 |
-
# Append the new user message.
|
144 |
-
messages_context.append({"role": "user", "content": message})
|
145 |
-
|
146 |
-
# Stream the model's reply token-by-token.
|
147 |
-
response = ""
|
148 |
-
for message_resp in client.chat_completion(
|
149 |
-
messages_context,
|
150 |
-
max_tokens=max_tokens,
|
151 |
-
stream=True,
|
152 |
-
temperature=temperature,
|
153 |
-
top_p=top_p,
|
154 |
-
):
|
155 |
-
token = message_resp.choices[0].delta.content
|
156 |
-
response += token
|
157 |
-
yield response
|
158 |
-
|
159 |
-
# --- Gradio Chat Interface ---
|
160 |
-
|
161 |
-
# The language selection dropdown uses language codes: "en" for English, "fr" for French, "am" for Amharic.
|
162 |
-
demo = gr.ChatInterface(
|
163 |
-
respond,
|
164 |
-
additional_inputs=[
|
165 |
-
gr.Textbox(
|
166 |
-
value="You are AgriFutureBot, designed to help visitors of the Agri Future Investment platform understand content about the site and answer questions strictly related to agriculture and agro-investment topics.",
|
167 |
-
label="System Message"
|
168 |
-
),
|
169 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
|
170 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
171 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
|
172 |
-
gr.Dropdown(choices=["en", "fr", "am"], value="en", label="Language (en, fr, am)")
|
173 |
-
],
|
174 |
-
)
|
175 |
-
|
176 |
-
if __name__ == "__main__":
|
177 |
-
demo.launch()
|
|
|
23 |
options.headless = True # Run browser in headless mode.
|
24 |
driver = webdriver.Chrome(options=options)
|
25 |
driver.get(url)
|
26 |
+
# Use explicit waits in production; here we use a basic sleep.
|
27 |
time.sleep(5)
|
28 |
try:
|
29 |
+
# Customize the selector based on your site's HTML structure.
|
30 |
content_element = driver.find_element(By.ID, "content")
|
31 |
page_text = content_element.text
|
32 |
except Exception as e:
|
|
|
43 |
|
44 |
# --- Multilingual Helpers ---
|
45 |
|
|
|
46 |
def is_greeting(query: str, lang: str) -> bool:
|
47 |
greetings = {
|
48 |
"en": ["hello", "hi", "hey", "good morning", "good afternoon", "good evening"],
|
49 |
"fr": ["bonjour", "salut", "coucou", "bonsoir"],
|
50 |
"am": ["ሰላም", "ሰላም እንደምን", "እንዴት"]
|
51 |
}
|
|
|
52 |
greet_list = greetings.get(lang, greetings["en"])
|
53 |
+
# For languages using Latin script, convert to lower case.
|
54 |
if lang != "am":
|
55 |
query = query.lower()
|
56 |
return any(query.startswith(greet) for greet in greet_list)
|
57 |
|
58 |
+
# Rather than using fixed out-of-scope messages, use the model via Hugging Face to generate them.
|
59 |
+
def generate_dynamic_out_of_scope_message(language: str) -> str:
|
60 |
+
# Define language-specific system prompts for generating a dynamic out-of-scope message.
|
61 |
+
system_prompts = {
|
62 |
+
"en": (
|
63 |
+
"You are a helpful chatbot specializing in agriculture and agro-investment. "
|
64 |
+
"A user just asked a question that is not related to these topics. "
|
65 |
+
"Generate a friendly, varied, and intelligent out-of-scope response in English that kindly encourages the user to ask about agriculture or agro-investment."
|
66 |
+
),
|
67 |
+
"fr": (
|
68 |
+
"Vous êtes un chatbot utile spécialisé dans l'agriculture et les investissements agroalimentaires. "
|
69 |
+
"Un utilisateur vient de poser une question qui ne concerne pas ces sujets. "
|
70 |
+
"Générez une réponse élégante, variée et intelligente en français pour indiquer que la question est hors de portée, en invitant l'utilisateur à poser une question sur l'agriculture ou les investissements agroalimentaires."
|
71 |
+
),
|
72 |
+
"am": (
|
73 |
+
"እርስዎ በግብርናና በአገልግሎት ስርዓተ-ቢዝነስ ውስጥ በተለይ የተሞሉ ቻትቦት ናቸው። "
|
74 |
+
"ተጠቃሚው ለግብርና ወይም ለአገልግሎት ስርዓተ-ቢዝነስ ተያይዞ ያልሆነ ጥያቄ አስቀድመዋል። "
|
75 |
+
"በአማርኛ በተለያዩ መልኩ የውጭ ክፍል መልእክት ፍጥረት ያድርጉ፤ እባኮትን ተጠቃሚውን ለግብርና ወይም ለአገልግሎት ጥያቄዎች ለመጠየቅ ያነጋግሩ።"
|
76 |
+
)
|
|
|
77 |
}
|
78 |
+
prompt = system_prompts.get(language, system_prompts["en"])
|
79 |
+
messages = [{"role": "system", "content": prompt}]
|
80 |
+
|
81 |
+
# Call the model without streaming to generate the complete message.
|
82 |
+
response = client.chat_completion(
|
83 |
+
messages,
|
84 |
+
max_tokens=80,
|
85 |
+
stream=False,
|
86 |
+
temperature=0.7,
|
87 |
+
top_p=0.95,
|
88 |
+
)
|
89 |
+
# Depending on the client structure, adjust the extraction of the generated text.
|
90 |
+
try:
|
91 |
+
out_message = response.choices[0].message.content
|
92 |
+
except AttributeError:
|
93 |
+
# If the response structure differs, do a fallback conversion.
|
94 |
+
out_message = str(response)
|
95 |
+
return out_message.strip()
|
96 |
|
97 |
+
# A helper to determine domain relevance (basic implementation; can be expanded).
|
98 |
def is_domain_query(query: str) -> bool:
|
99 |
domain_keywords = [
|
100 |
"agriculture", "farming", "crop", "agro", "investment", "soil",
|
101 |
"irrigation", "harvest", "organic", "sustainable", "agribusiness",
|
102 |
+
"livestock", "agroalimentaire", "agriculture durable"
|
|
|
103 |
]
|
104 |
return any(re.search(r"\b" + keyword + r"\b", query, re.IGNORECASE) for keyword in domain_keywords)
|
105 |
|
106 |
def retrieve_relevant_snippet(query: str, text: str, max_length: int = 300) -> str:
|
|
|
|
|
|
|
|
|
|
|
107 |
sentences = re.split(r'[.?!]', text)
|
108 |
+
for sentence in sentences12
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|