|
import torch |
|
import torch.nn as nn |
|
import math |
|
from indextts.utils.xtransformers import RelativePositionBias |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
class GroupNorm32(nn.GroupNorm): |
|
def forward(self, x): |
|
return super().forward(x.float()).type(x.dtype) |
|
|
|
|
|
def normalization(channels): |
|
""" |
|
Make a standard normalization layer. |
|
|
|
:param channels: number of input channels. |
|
:return: an nn.Module for normalization. |
|
""" |
|
groups = 32 |
|
if channels <= 16: |
|
groups = 8 |
|
elif channels <= 64: |
|
groups = 16 |
|
while channels % groups != 0: |
|
groups = int(groups / 2) |
|
assert groups > 2 |
|
return GroupNorm32(groups, channels) |
|
|
|
|
|
class QKVAttentionLegacy(nn.Module): |
|
""" |
|
A module which performs QKV attention. Matches legacy QKVAttention + input/output heads shaping |
|
""" |
|
|
|
def __init__(self, n_heads): |
|
super().__init__() |
|
self.n_heads = n_heads |
|
|
|
def forward(self, qkv, mask=None, rel_pos=None): |
|
""" |
|
Apply QKV attention. |
|
|
|
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. |
|
:return: an [N x (H * C) x T] tensor after attention. |
|
""" |
|
bs, width, length = qkv.shape |
|
assert width % (3 * self.n_heads) == 0 |
|
ch = width // (3 * self.n_heads) |
|
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) |
|
scale = 1 / math.sqrt(math.sqrt(ch)) |
|
weight = torch.einsum( |
|
"bct,bcs->bts", q * scale, k * scale |
|
) |
|
if rel_pos is not None: |
|
weight = rel_pos(weight.reshape(bs, self.n_heads, weight.shape[-2], weight.shape[-1])).reshape(bs * self.n_heads, weight.shape[-2], weight.shape[-1]) |
|
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
if mask is not None: |
|
|
|
mask = mask.repeat(self.n_heads, 1).unsqueeze(1) |
|
weight = weight * mask |
|
a = torch.einsum("bts,bcs->bct", weight, v) |
|
|
|
return a.reshape(bs, -1, length) |
|
|
|
|
|
class AttentionBlock(nn.Module): |
|
""" |
|
An attention block that allows spatial positions to attend to each other. |
|
|
|
Originally ported from here, but adapted to the N-d case. |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
num_heads=1, |
|
num_head_channels=-1, |
|
do_checkpoint=True, |
|
relative_pos_embeddings=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.do_checkpoint = do_checkpoint |
|
if num_head_channels == -1: |
|
self.num_heads = num_heads |
|
else: |
|
assert ( |
|
channels % num_head_channels == 0 |
|
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" |
|
self.num_heads = channels // num_head_channels |
|
self.norm = normalization(channels) |
|
self.qkv = nn.Conv1d(channels, channels * 3, 1) |
|
|
|
self.attention = QKVAttentionLegacy(self.num_heads) |
|
|
|
self.proj_out = zero_module(nn.Conv1d(channels, channels, 1)) |
|
if relative_pos_embeddings: |
|
self.relative_pos_embeddings = RelativePositionBias(scale=(channels // self.num_heads) ** .5, causal=False, heads=num_heads, num_buckets=32, max_distance=64) |
|
else: |
|
self.relative_pos_embeddings = None |
|
|
|
def forward(self, x, mask=None): |
|
b, c, *spatial = x.shape |
|
x = x.reshape(b, c, -1) |
|
qkv = self.qkv(self.norm(x)) |
|
h = self.attention(qkv, mask, self.relative_pos_embeddings) |
|
h = self.proj_out(h) |
|
return (x + h).reshape(b, c, *spatial) |
|
|