Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
-
|
6 |
-
|
7 |
-
from src.about import (
|
8 |
CITATION_BUTTON_LABEL,
|
9 |
CITATION_BUTTON_TEXT,
|
10 |
EVALUATION_QUEUE_TEXT,
|
@@ -12,112 +11,124 @@ from src.about import (
|
|
12 |
LLM_BENCHMARKS_TEXT,
|
13 |
TITLE,
|
14 |
)
|
15 |
-
from src.display.css_html_js import custom_css
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def restart_space():
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
print(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
restart_space()
|
43 |
-
try:
|
44 |
-
print(EVAL_RESULTS_PATH)
|
45 |
-
snapshot_download(
|
46 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
47 |
-
)
|
48 |
-
except Exception:
|
49 |
-
restart_space()
|
50 |
-
|
51 |
-
|
52 |
-
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
53 |
-
|
54 |
-
(
|
55 |
-
finished_eval_queue_df,
|
56 |
-
running_eval_queue_df,
|
57 |
-
pending_eval_queue_df,
|
58 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
-
|
60 |
-
def init_leaderboard(dataframe):
|
61 |
-
if dataframe is None or dataframe.empty:
|
62 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
63 |
-
return Leaderboard(
|
64 |
-
value=dataframe,
|
65 |
-
datatype=[c.type for c in fields(AutoEvalColumn)],
|
66 |
-
select_columns=SelectColumns(
|
67 |
-
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
68 |
-
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
-
label="Select Columns to Display:",
|
70 |
-
),
|
71 |
-
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
72 |
-
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
-
filter_columns=[
|
74 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
75 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
-
ColumnFilter(
|
77 |
-
AutoEvalColumn.params.name,
|
78 |
-
type="slider",
|
79 |
-
min=0.01,
|
80 |
-
max=150,
|
81 |
-
label="Select the number of parameters (B)",
|
82 |
-
),
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
-
),
|
86 |
-
],
|
87 |
-
bool_checkboxgroup_label="Hide models",
|
88 |
-
interactive=False,
|
89 |
-
)
|
90 |
-
|
91 |
-
|
92 |
demo = gr.Blocks(css=custom_css)
|
|
|
93 |
with demo:
|
94 |
gr.HTML(TITLE)
|
95 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
|
97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
103 |
|
104 |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
|
|
105 |
with gr.Column():
|
106 |
with gr.Row():
|
107 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
108 |
-
|
109 |
with gr.Column():
|
|
|
110 |
with gr.Accordion(
|
111 |
-
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
112 |
open=False,
|
113 |
):
|
114 |
with gr.Row():
|
115 |
-
|
116 |
value=finished_eval_queue_df,
|
117 |
headers=EVAL_COLS,
|
118 |
datatype=EVAL_TYPES,
|
119 |
row_count=5,
|
120 |
-
|
121 |
with gr.Accordion(
|
122 |
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
123 |
open=False,
|
@@ -129,7 +140,6 @@ with demo:
|
|
129 |
datatype=EVAL_TYPES,
|
130 |
row_count=5,
|
131 |
)
|
132 |
-
|
133 |
with gr.Accordion(
|
134 |
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
135 |
open=False,
|
@@ -141,31 +151,35 @@ with demo:
|
|
141 |
datatype=EVAL_TYPES,
|
142 |
row_count=5,
|
143 |
)
|
|
|
144 |
with gr.Row():
|
145 |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
146 |
-
|
147 |
with gr.Row():
|
|
|
148 |
with gr.Column():
|
149 |
model_name_textbox = gr.Textbox(label="Model name")
|
150 |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
|
|
151 |
model_type = gr.Dropdown(
|
152 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
|
|
153 |
label="Model type",
|
154 |
multiselect=False,
|
155 |
value=None,
|
156 |
interactive=True,
|
157 |
)
|
158 |
-
|
159 |
with gr.Column():
|
160 |
precision = gr.Dropdown(
|
161 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
|
|
162 |
label="Precision",
|
163 |
multiselect=False,
|
164 |
value="float16",
|
165 |
interactive=True,
|
166 |
)
|
167 |
weight_type = gr.Dropdown(
|
168 |
-
choices=[i.value.name for i in WeightType],
|
|
|
169 |
label="Weights type",
|
170 |
multiselect=False,
|
171 |
value="Original",
|
@@ -175,6 +189,8 @@ with demo:
|
|
175 |
|
176 |
submit_button = gr.Button("Submit Eval")
|
177 |
submission_result = gr.Markdown()
|
|
|
|
|
178 |
submit_button.click(
|
179 |
add_new_eval,
|
180 |
[
|
@@ -198,7 +214,11 @@ with demo:
|
|
198 |
show_copy_button=True,
|
199 |
)
|
200 |
|
201 |
-
scheduler
|
202 |
-
scheduler
|
203 |
-
scheduler.
|
204 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
4 |
+
# Removed Hugging Face Hub imports as they are not needed for the simplified leaderboard
|
5 |
+
# from huggingface_hub import snapshot_download, HfApi
|
6 |
+
from src.about import ( # Assuming these still exist and are relevant for other tabs
|
7 |
CITATION_BUTTON_LABEL,
|
8 |
CITATION_BUTTON_TEXT,
|
9 |
EVALUATION_QUEUE_TEXT,
|
|
|
11 |
LLM_BENCHMARKS_TEXT,
|
12 |
TITLE,
|
13 |
)
|
14 |
+
from src.display.css_html_js import custom_css # Keep custom CSS
|
15 |
+
# Removed utils imports related to the old leaderboard
|
16 |
+
# from src.display.utils import (...)
|
17 |
+
from src.envs import REPO_ID # Keep if needed for restart_space or other functions
|
18 |
+
# Removed constants related to old data paths and repos if not needed elsewhere
|
19 |
+
# from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
20 |
+
# Removed old data processing functions
|
21 |
+
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
22 |
+
from src.submission.submit import add_new_eval # Keep submission logic
|
23 |
+
|
24 |
+
# --- New Elo Leaderboard Configuration ---
|
25 |
+
INITIAL_MODELS = [
|
26 |
+
"gpt-4o-mini", "gpt-4o", "gemini-2.0-flash", "deepseek-v3",
|
27 |
+
"gemini-2.0-pro", "o3-mini", "deepseek-r1", "gemini-2.5-pro"
|
28 |
+
]
|
29 |
+
CATEGORIES = ["MLE-Lite", "Tabular", "NLP", "CV"]
|
30 |
+
DEFAULT_ELO = 1200
|
31 |
+
|
32 |
+
# Placeholder data structure for Elo scores per category
|
33 |
+
# *** MODIFY THE SCORES HERE AS NEEDED ***
|
34 |
+
elo_data = {
|
35 |
+
category: pd.DataFrame({
|
36 |
+
"Model": INITIAL_MODELS,
|
37 |
+
"Elo Score": [DEFAULT_ELO] * len(INITIAL_MODELS)
|
38 |
+
}) for category in CATEGORIES
|
39 |
+
}
|
40 |
+
# Example: How to set specific scores for a category
|
41 |
+
# elo_data["NLP"] = pd.DataFrame({
|
42 |
+
# "Model": INITIAL_MODELS,
|
43 |
+
# "Elo Score": [1300, 1450, 1250, 1350, 1400, 1150, 1320, 1500] # Example scores
|
44 |
+
# })
|
45 |
+
|
46 |
+
# --- Helper function to update leaderboard ---
|
47 |
+
def update_leaderboard(category):
|
48 |
+
"""Returns the DataFrame for the selected category."""
|
49 |
+
df = elo_data.get(category)
|
50 |
+
if df is None:
|
51 |
+
# Return default if category not found (shouldn't happen with radio)
|
52 |
+
return elo_data[CATEGORIES[0]]
|
53 |
+
return df
|
54 |
+
|
55 |
+
# --- Mock/Placeholder functions/data for other tabs ---
|
56 |
+
# Since we removed the snapshot download, the original queue fetching will fail.
|
57 |
+
# Provide empty DataFrames or mock data if you want the queue display to work without the original data source.
|
58 |
+
# This is a placeholder - replace with actual data loading if needed for the submission tab.
|
59 |
+
print("Warning: Evaluation queue data fetching is disabled/mocked due to leaderboard changes.")
|
60 |
+
finished_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
|
61 |
+
running_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
|
62 |
+
pending_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
|
63 |
+
EVAL_COLS = ["Model", "Status", "Requested", "Started"] # Define for the dataframe headers
|
64 |
+
EVAL_TYPES = ["str", "str", "str", "str"] # Define for the dataframe types
|
65 |
+
|
66 |
+
# --- Keep restart function if relevant ---
|
67 |
+
# Assuming HfApi is initialized elsewhere or REPO_ID is sufficient
|
68 |
+
# api = HfApi() # Example initialization, adjust as needed
|
69 |
def restart_space():
|
70 |
+
print(f"Attempting to restart space: {REPO_ID}")
|
71 |
+
# Replace with your actual space restart mechanism if needed
|
72 |
+
# try:
|
73 |
+
# api.restart_space(repo_id=REPO_ID)
|
74 |
+
# print("Space restart request sent.")
|
75 |
+
# except Exception as e:
|
76 |
+
# print(f"Failed to restart space: {e}")
|
77 |
+
|
78 |
+
# --- Gradio App Definition ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
demo = gr.Blocks(css=custom_css)
|
80 |
+
|
81 |
with demo:
|
82 |
gr.HTML(TITLE)
|
83 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
84 |
|
85 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
86 |
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
87 |
+
with gr.Column():
|
88 |
+
gr.Markdown("## Model Elo Rankings") # New title for the section
|
89 |
+
category_selector = gr.Radio(
|
90 |
+
choices=CATEGORIES,
|
91 |
+
label="Select Category",
|
92 |
+
value=CATEGORIES[0], # Default selection
|
93 |
+
interactive=True,
|
94 |
+
container=False, # Make radio buttons horizontal if possible with CSS
|
95 |
+
)
|
96 |
+
leaderboard_df_component = gr.Dataframe(
|
97 |
+
value=update_leaderboard(CATEGORIES[0]), # Initial value
|
98 |
+
headers=["Model", "Elo Score"],
|
99 |
+
datatype=["str", "number"],
|
100 |
+
interactive=False,
|
101 |
+
row_count=(len(INITIAL_MODELS), "fixed"), # Fixed row count
|
102 |
+
col_count=(2, "fixed"), # Fixed column count
|
103 |
+
)
|
104 |
+
# Link the radio button change to the update function
|
105 |
+
category_selector.change(
|
106 |
+
fn=update_leaderboard,
|
107 |
+
inputs=category_selector,
|
108 |
+
outputs=leaderboard_df_component
|
109 |
+
)
|
110 |
|
111 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
112 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
113 |
|
114 |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
115 |
+
# --- This section remains largely unchanged, but relies on potentially missing data ---
|
116 |
with gr.Column():
|
117 |
with gr.Row():
|
118 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
|
|
119 |
with gr.Column():
|
120 |
+
# Displaying queue tables with potentially empty/mock data
|
121 |
with gr.Accordion(
|
122 |
+
f"β
Finished Evaluations ({len(finished_eval_queue_df)})", # Length might be 0
|
123 |
open=False,
|
124 |
):
|
125 |
with gr.Row():
|
126 |
+
finished_eval_table = gr.components.Dataframe(
|
127 |
value=finished_eval_queue_df,
|
128 |
headers=EVAL_COLS,
|
129 |
datatype=EVAL_TYPES,
|
130 |
row_count=5,
|
131 |
+
)
|
132 |
with gr.Accordion(
|
133 |
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
134 |
open=False,
|
|
|
140 |
datatype=EVAL_TYPES,
|
141 |
row_count=5,
|
142 |
)
|
|
|
143 |
with gr.Accordion(
|
144 |
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
145 |
open=False,
|
|
|
151 |
datatype=EVAL_TYPES,
|
152 |
row_count=5,
|
153 |
)
|
154 |
+
|
155 |
with gr.Row():
|
156 |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
|
|
157 |
with gr.Row():
|
158 |
+
# Submission form - kept as is
|
159 |
with gr.Column():
|
160 |
model_name_textbox = gr.Textbox(label="Model name")
|
161 |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
162 |
+
# Using simple strings for dropdowns now, adjust if ModelType/Precision/WeightType classes are still needed
|
163 |
model_type = gr.Dropdown(
|
164 |
+
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], # Original
|
165 |
+
choices=["Type A", "Type B", "Type C"], # Example choices, replace if needed
|
166 |
label="Model type",
|
167 |
multiselect=False,
|
168 |
value=None,
|
169 |
interactive=True,
|
170 |
)
|
|
|
171 |
with gr.Column():
|
172 |
precision = gr.Dropdown(
|
173 |
+
# choices=[i.value.name for i in Precision if i != Precision.Unknown], # Original
|
174 |
+
choices=["float16", "bfloat16", "float32", "int8"], # Example choices
|
175 |
label="Precision",
|
176 |
multiselect=False,
|
177 |
value="float16",
|
178 |
interactive=True,
|
179 |
)
|
180 |
weight_type = gr.Dropdown(
|
181 |
+
# choices=[i.value.name for i in WeightType], # Original
|
182 |
+
choices=["Original", "Adapter", "Delta"], # Example choices
|
183 |
label="Weights type",
|
184 |
multiselect=False,
|
185 |
value="Original",
|
|
|
189 |
|
190 |
submit_button = gr.Button("Submit Eval")
|
191 |
submission_result = gr.Markdown()
|
192 |
+
|
193 |
+
# Keep submission logic attached
|
194 |
submit_button.click(
|
195 |
add_new_eval,
|
196 |
[
|
|
|
214 |
show_copy_button=True,
|
215 |
)
|
216 |
|
217 |
+
# --- Keep scheduler if relevant ---
|
218 |
+
# scheduler = BackgroundScheduler()
|
219 |
+
# scheduler.add_job(restart_space, "interval", seconds=1800) # Restart every 30 mins
|
220 |
+
# scheduler.start()
|
221 |
+
|
222 |
+
# --- Launch the app ---
|
223 |
+
# demo.queue(default_concurrency_limit=40).launch() # Original launch
|
224 |
+
demo.launch() # Simpler launch for testing
|