Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,71 +1,66 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
import numpy as np
|
| 4 |
from sklearn.linear_model import LinearRegression
|
| 5 |
-
|
| 6 |
-
from sklearn.preprocessing import LabelEncoder
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
st.set_page_config(page_title="
|
| 10 |
-
st.title("
|
| 11 |
-
st.markdown("Fill in the product details to get a sales prediction.")
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
def load_data():
|
| 16 |
-
data = pd.read_csv("Train.csv") # 👈 Make sure Train.csv is in the same directory
|
| 17 |
-
# Handle missing values
|
| 18 |
-
data.fillna(data.mean(numeric_only=True), inplace=True)
|
| 19 |
-
data.fillna("Unknown", inplace=True)
|
| 20 |
-
|
| 21 |
-
# Encode categorical columns
|
| 22 |
-
label_enc = LabelEncoder()
|
| 23 |
-
for col in ['Item_Fat_Content', 'Item_Type', 'Outlet_Identifier', 'Outlet_Size', 'Outlet_Location_Type', 'Outlet_Type']:
|
| 24 |
-
data[col] = label_enc.fit_transform(data[col])
|
| 25 |
-
return data
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
| 38 |
-
model.fit(X, y)
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
item_visibility = st.slider("👀 Item Visibility", 0.0, 1.0, 0.05)
|
| 44 |
-
item_mrp = st.number_input("💰 Item MRP", min_value=0.0, step=1.0)
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
if not product_name:
|
| 49 |
-
st.warning("Please enter a product name.")
|
| 50 |
-
else:
|
| 51 |
-
user_input = np.array([[item_weight, item_visibility, item_mrp]])
|
| 52 |
-
predicted_sales = model.predict(user_input)[0]
|
| 53 |
-
st.success(f"📈 Predicted Sales for '{product_name}': ₹{predicted_sales:,.2f}")
|
| 54 |
-
|
| 55 |
-
# Optional: Download Prediction
|
| 56 |
-
result_df = pd.DataFrame({
|
| 57 |
-
"Product Name": [product_name],
|
| 58 |
-
"Item Weight": [item_weight],
|
| 59 |
-
"Item Visibility": [item_visibility],
|
| 60 |
-
"Item MRP": [item_mrp],
|
| 61 |
-
"Predicted Sales": [predicted_sales]
|
| 62 |
-
})
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
from sklearn.linear_model import LinearRegression
|
| 4 |
+
import matplotlib.pyplot as plt
|
|
|
|
| 5 |
|
| 6 |
+
# Page config
|
| 7 |
+
st.set_page_config(page_title="Crime Rate Prediction", layout="wide")
|
| 8 |
+
st.title("📊 Crime Rate Prediction Based on Past Data")
|
|
|
|
| 9 |
|
| 10 |
+
# Replace this with your actual dataset path
|
| 11 |
+
csv_path = "crime_data.csv" # Example: "data/crime_data.csv" if inside a folder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# Load data
|
| 14 |
+
try:
|
| 15 |
+
df = pd.read_csv(csv_path)
|
| 16 |
|
| 17 |
+
# Display raw data
|
| 18 |
+
st.subheader("📄 Raw Dataset")
|
| 19 |
+
st.dataframe(df)
|
| 20 |
|
| 21 |
+
# Extract the relevant columns
|
| 22 |
+
data = df[[
|
| 23 |
+
'State/UT',
|
| 24 |
+
'Number of Cases Registered - 2018-19',
|
| 25 |
+
'Number of Cases Registered - 2019-20',
|
| 26 |
+
'Number of Cases Registered - 2020-21',
|
| 27 |
+
'Number of Cases Registered - 2021-22 (up to 31.10.2021)'
|
| 28 |
+
]].copy()
|
| 29 |
|
| 30 |
+
# Rename for easier access
|
| 31 |
+
data.columns = ['State/UT', '2018', '2019', '2020', '2021']
|
|
|
|
| 32 |
|
| 33 |
+
# Model training & prediction
|
| 34 |
+
years = ['2018', '2019', '2020', '2021']
|
| 35 |
+
future_year = '2022'
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
X = pd.DataFrame({'Year': [2018, 2019, 2020, 2021]})
|
| 38 |
+
predicted_values = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
for i, row in data.iterrows():
|
| 41 |
+
y = row[years].values
|
| 42 |
+
model = LinearRegression()
|
| 43 |
+
model.fit(X, y)
|
| 44 |
+
pred = model.predict([[2022]])[0]
|
| 45 |
+
predicted_values.append(max(0, int(pred))) # Avoid negatives
|
| 46 |
|
| 47 |
+
data['Predicted 2022'] = predicted_values
|
| 48 |
+
|
| 49 |
+
# Display result
|
| 50 |
+
st.subheader("📈 Predicted Crime Rate for 2022")
|
| 51 |
+
st.dataframe(data[['State/UT', 'Predicted 2022']].sort_values(by='Predicted 2022', ascending=False))
|
| 52 |
+
|
| 53 |
+
# Plot top 10 states
|
| 54 |
+
st.subheader("🔝 Top 10 States by Predicted Crime Rate")
|
| 55 |
+
top10 = data.sort_values(by='Predicted 2022', ascending=False).head(10)
|
| 56 |
+
|
| 57 |
+
fig, ax = plt.subplots()
|
| 58 |
+
ax.barh(top10['State/UT'], top10['Predicted 2022'], color='salmon')
|
| 59 |
+
ax.set_xlabel("Predicted Cases")
|
| 60 |
+
ax.set_ylabel("State/UT")
|
| 61 |
+
ax.invert_yaxis()
|
| 62 |
+
ax.set_title("Top 10 States with Highest Predicted Crime Rate (2022)")
|
| 63 |
+
st.pyplot(fig)
|
| 64 |
+
|
| 65 |
+
except FileNotFoundError:
|
| 66 |
+
st.error(f"❌ File not found at path: {csv_path}. Please check the path.")
|