import streamlit as st import streamlit as st import sys import io def execute_code(code, user_input=""): """Execute the given code with simulated input and return the output.""" old_stdout = sys.stdout # Backup original stdout redirected_output = io.StringIO() # Create a new string buffer sys.stdout = redirected_output # Redirect stdout to buffer input_values = user_input.strip().split("\n") # Split user inputs by line input_counter = 0 def mock_input(prompt=""): nonlocal input_counter if input_counter < len(input_values): value = input_values[input_counter] input_counter += 1 return value else: raise ValueError("Not enough inputs provided.") try: exec(code, {"input": mock_input}) # Execute the user's code with mock input output = redirected_output.getvalue() # Get the output from buffer except Exception as e: output = f"Error: {str(e)}" # Capture and display any errors finally: sys.stdout = old_stdout # Restore original stdout return output.strip() # Return cleaned output # Streamlit UI st.title("💻 Python Compiler 🐍") st.write("Write your Python code and get the correct output!") code_input = st.text_area("Enter your Python code:", height=200) user_input = st.text_area("Enter input values (one per line):", height=100) # Added input field if st.button("Run Code"): if code_input.strip(): with st.spinner("Executing..."): output = execute_code(code_input, user_input) # Execute user code with mock input st.subheader("Output:") st.code(output, language="plaintext") else: st.warning("⚠️ Please enter some Python code before running.") # V1 without gemini api # import streamlit as st # import requests # import os # Import os to access environment variables # # Get API token from environment variable # API_TOKEN = os.getenv("HF_API_TOKEN") # # Change MODEL_ID to a better model # MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended) # # MODEL_ID = "bigcode/starcoder2-15b" # StarCoder2 # # MODEL_ID = "bigcode/starcoder" # API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}" # HEADERS = {"Authorization": f"Bearer {API_TOKEN}"} # def translate_code(code_snippet, source_lang, target_lang): # """Translate code using Hugging Face API securely.""" # prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n" # response = requests.post(API_URL, headers=HEADERS, json={ # "inputs": prompt, # "parameters": { # "max_new_tokens": 150, # "temperature": 0.2, # "top_k": 50 # # "stop": ["\n\n", "#", "//", "'''"] # } # }) # if response.status_code == 200: # generated_text = response.json()[0]["generated_text"] # translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip() # return translated_code # else: # return f"Error: {response.status_code}, {response.text}" # # Streamlit UI # st.title("🔄 Code Translator using StarCoder") # st.write("Translate code between different programming languages using AI.") # languages = ["Python", "Java", "C++", "C"] # source_lang = st.selectbox("Select source language", languages) # target_lang = st.selectbox("Select target language", languages) # code_input = st.text_area("Enter your code here:", height=200) # if st.button("Translate"): # if code_input.strip(): # with st.spinner("Translating..."): # translated_code = translate_code(code_input, source_lang, target_lang) # st.subheader("Translated Code:") # st.code(translated_code, language=target_lang.lower()) # else: # st.warning(" ⚠️ Please enter some code before translating. ")