File size: 3,133 Bytes
7949e50
01e0394
 
7949e50
01e0394
 
 
 
 
7949e50
68ed73f
 
01e0394
 
3e86e45
01e0394
 
68ed73f
 
 
01e0394
 
 
 
68ed73f
01e0394
 
 
 
 
 
 
 
 
 
68ed73f
 
 
 
 
 
 
01e0394
68ed73f
 
 
01e0394
 
 
 
 
 
 
 
 
 
68ed73f
01e0394
 
7949e50
 
3e86e45
 
7949e50
 
3e86e45
 
 
7949e50
 
3e86e45
 
 
 
 
 
7949e50
3e86e45
01e0394
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import streamlit as st
import requests
import os

# Ensure the Hugging Face API Token is available
API_TOKEN = os.getenv("HF_API_TOKEN")
if not API_TOKEN:
    st.error("⚠️ API Token is missing! Please set HF_API_TOKEN as an environment variable.")
    st.stop()

# Use StarCoder for better translation
MODEL_ID = "bigcode/starcoder"
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}

def translate_code(code_snippet, source_lang, target_lang):
    """Translate code between languages using Hugging Face API."""
    prompt = f"""
    ### Task: Convert {source_lang} code to {target_lang}.

    #### {source_lang} Code:
    ```{source_lang.lower()}
    {code_snippet}
    ```

    #### Translated {target_lang} Code:
    """

    try:
        response = requests.post(API_URL, headers=HEADERS, json={"inputs": prompt})
        
        if response.status_code == 200:
            result = response.json()
            if isinstance(result, list) and result:
                generated_text = result[0].get("generated_text", "")
                
                # Extract translated code
                if f"#### Translated {target_lang} Code:" in generated_text:
                    translated_code = generated_text.split(f"#### Translated {target_lang} Code:")[-1].strip()
                else:
                    translated_code = generated_text.strip()

                return translated_code if translated_code else "⚠️ No translated code received."
            
            return "⚠️ Unexpected API response format."
        
        elif response.status_code == 400:
            return "⚠️ Error: Bad request. Check your input."
        elif response.status_code == 401:
            return "⚠️ Error: Unauthorized. Check your API token."
        elif response.status_code == 403:
            return "⚠️ Error: Access Forbidden. You may need special model access."
        elif response.status_code == 503:
            return "⚠️ Error: Model is loading. Please wait and try again."
        else:
            return f"⚠️ API Error {response.status_code}: {response.text}"

    except requests.exceptions.RequestException as e:
        return f"⚠️ Network Error: {str(e)}"

# Streamlit UI
st.title("🔄 AI Code Translator")
st.write("Convert code between Python, Java, C++, and C.")

languages = ["Python", "Java", "C++", "C"]
source_lang = st.selectbox("Select Source Language", languages)
target_lang = st.selectbox("Select Target Language", languages)
code_input = st.text_area("Enter your code:", height=200)

if st.button("Translate"):
    if source_lang == target_lang:
        st.warning("⚠️ Source and target languages must be different!")
    elif not code_input.strip():
        st.warning("⚠️ Please enter some code before translating.")
    else:
        with st.spinner("Translating... ⏳"):
            translated_code = translate_code(code_input, source_lang, target_lang)
            st.subheader(f"Translated {target_lang} Code:")
            st.code(translated_code, language=target_lang.lower())