import streamlit as st import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder # Streamlit UI st.set_page_config(page_title="BigMart Sales Predictor", page_icon="🛒", layout="centered") st.title("🛒 BigMart Sales Prediction using Real World Dataset") st.markdown("Fill in the product details to get a sales prediction.") # Load and preprocess dataset @st.cache_data def load_data(): data = pd.read_csv("Train.csv") # 👈 Make sure Train.csv is in the same directory # Handle missing values data.fillna(data.mean(numeric_only=True), inplace=True) data.fillna("Unknown", inplace=True) # Encode categorical columns label_enc = LabelEncoder() for col in ['Item_Fat_Content', 'Item_Type', 'Outlet_Identifier', 'Outlet_Size', 'Outlet_Location_Type', 'Outlet_Type']: data[col] = label_enc.fit_transform(data[col]) return data df = load_data() # Select features and target features = ['Item_Weight', 'Item_Visibility', 'Item_MRP'] target = 'Item_Outlet_Sales' X = df[features] y = df[target] # Train model model = LinearRegression() model.fit(X, y) # Input UI product_name = st.text_input("📦 Product Name") item_weight = st.number_input("⚖️ Item Weight (kg)", min_value=0.0, step=0.1) item_visibility = st.slider("👀 Item Visibility", 0.0, 1.0, 0.05) item_mrp = st.number_input("💰 Item MRP", min_value=0.0, step=1.0) # Prediction if st.button("Predict Sales"): if not product_name: st.warning("Please enter a product name.") else: user_input = np.array([[item_weight, item_visibility, item_mrp]]) predicted_sales = model.predict(user_input)[0] st.success(f"📈 Predicted Sales for '{product_name}': ₹{predicted_sales:,.2f}") # Optional: Download Prediction result_df = pd.DataFrame({ "Product Name": [product_name], "Item Weight": [item_weight], "Item Visibility": [item_visibility], "Item MRP": [item_mrp], "Predicted Sales": [predicted_sales] }) st.download_button("📥 Download Result as CSV", result_df.to_csv(index=False), file_name="prediction.csv", mime="text/csv") # Sidebar Info st.sidebar.title("📌 About") st.sidebar.markdown(""" This app uses a **real BigMart dataset** from Kaggle and a **Linear Regression model** to predict sales. You can customize features or switch to advanced ML models later! """)