import streamlit as st import pandas as pd from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt # Page config st.set_page_config(page_title="Crime Rate Prediction", layout="wide") st.title("📊 Crime Rate Prediction Based on Past Data") # CSV path (Make sure this file is uploaded in Streamlit cloud if deployed) csv_path = "crime_data.csv" try: # Load the dataset df = pd.read_csv(csv_path) st.subheader("📄 Raw Dataset") st.dataframe(df) # Preprocess data = df[[ 'State/UT', 'Number of Cases Registered - 2018-19', 'Number of Cases Registered - 2019-20', 'Number of Cases Registered - 2020-21', 'Number of Cases Registered - 2021-22 (up to 31.10.2021)' ]].copy() data.columns = ['State/UT', '2018', '2019', '2020', '2021'] # Convert string numbers to integers (if needed) for col in ['2018', '2019', '2020', '2021']: data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int) # Sidebar for user input st.sidebar.header("🔍 Predict Future Crime") selected_state = st.sidebar.selectbox("Select a State/UT", data['State/UT'].unique()) start_year = st.sidebar.slider("Select starting year for prediction", 2022, 2026, 2022) # Perform prediction for selected state selected_row = data[data['State/UT'] == selected_state].iloc[0] years = [2018, 2019, 2020, 2021] X_train = pd.DataFrame({'Year': years}) y_train = selected_row[['2018', '2019', '2020', '2021']].values model = LinearRegression() model.fit(X_train, y_train) future_years = list(range(start_year, 2028)) predictions = model.predict(pd.DataFrame({'Year': future_years})) # Prepare result DataFrame result_df = pd.DataFrame({ 'Year': future_years, 'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions] }) st.subheader(f"📈 Predicted Crime Rate in {selected_state} ({start_year}–2027)") st.dataframe(result_df) # Plotting fig2, ax2 = plt.subplots() ax2.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='teal') ax2.set_xlabel("Year") ax2.set_ylabel("Predicted Crime Cases") ax2.set_title(f"Crime Trend Prediction for {selected_state}") st.pyplot(fig2) except FileNotFoundError: st.error(f"❌ File not found at path: {csv_path}. Please check the path.")