import streamlit as st import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression # Streamlit page config st.set_page_config(page_title="BigMart Sales Predictor", page_icon="🛒", layout="centered") st.title("🛒 BigMart Sales Prediction") st.markdown("Enter item details below to predict sales:") # Input fields project_name = st.text_input("📦 Project Name") item_weight = st.number_input("⚖️ Item Weight (kg)", min_value=0.0, step=0.1) item_visibility = st.slider("👀 Item Visibility", 0.0, 1.0, 0.1) item_mrp = st.number_input("💰 Item MRP (Max Retail Price)", min_value=0.0, step=1.0) # Predict button if st.button("Predict Sales"): if not project_name: st.warning("Please enter a project name.") else: # Dummy ML Model: Replace with your actual trained model X_train = np.array([ [9.3, 0.016, 249.8], [5.92, 0.019, 48.27], [17.5, 0.016, 141.62], [19.2, 0.0075, 182.095], ]) y_train = np.array([3735.14, 443.42, 2233.6, 3612.47]) # example sales model = LinearRegression() model.fit(X_train, y_train) # Prepare input user_input = np.array([[item_weight, item_visibility, item_mrp]]) prediction = model.predict(user_input)[0] st.success(f"📈 Predicted Sales for '{project_name}': ₹{prediction:,.2f}") # Sidebar info st.sidebar.title("📌 About") st.sidebar.markdown( """ This app uses a simple ML model to estimate sales based on: - Item weight - Item visibility - Item MRP Replace with a trained BigMart dataset model for production use. """ )