import os import streamlit as st from dotenv import load_dotenv import google.generativeai as gen_ai # Load environment variables load_dotenv() # Configure Streamlit page settings st.set_page_config( page_title="Smart Waste Management System", page_icon="♻️", layout="centered", ) # Retrieve the Google API key from the environment GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") # Check if the API key is loaded if not GOOGLE_API_KEY: st.error("🚨 API key not found! Please set the GOOGLE_API_KEY in your .env file.") st.stop() # Configure the Generative AI model try: gen_ai.configure(api_key=GOOGLE_API_KEY) model = gen_ai.GenerativeModel("gemini-1.5-pro") # Updated model version except Exception as e: st.error(f"❌ Error initializing the Gemini-Pro model: {e}") st.stop() # Initialize the chat session if not already present in session state if "chat_session" not in st.session_state: try: st.session_state.chat_session = model.start_chat(history=[]) except Exception as e: st.error(f"❌ Error initializing chat session: {e}") st.stop() # Display the app's title st.title("♻️ Smart Waste Management System") # Introduction and instructions st.markdown( """ Welcome to the **Smart Waste Management System**! This tool helps **citizens, municipal workers, recycling companies, and biogas plants** collaborate efficiently for **better waste management**. ### **🌟 Key Features** - **Citizen Role:** Report waste collection issues and track garbage pickup. - **Municipal Workers:** Manage schedules and coordinate garbage segregation. - **Recycling Companies:** View and respond to requests for plastic waste. - **Biogas Plants:** Manage bio-waste for energy production. """ ) # User role selection user_role = st.selectbox("🔹 Select Your Role:", ["Citizen", "Municipal Worker", "Recycling Company", "Biogas Plant"]) # Chat input user_prompt = st.chat_input(f"💬 [{user_role}] Enter your query or task...") if user_prompt: # Display the user's message st.chat_message("user").markdown(f"**{user_role}:** {user_prompt}") # Generate a role-specific prompt role_specific_prompt = f"You are assisting a {user_role} in a smart waste management system. The user says: {user_prompt}" # Send the prompt to Gemini-Pro and get the response try: gemini_response = st.session_state.chat_session.send_message(role_specific_prompt) # Display Gemini-Pro's response with st.chat_message("assistant"): st.markdown(gemini_response.text) except Exception as e: st.error(f"❌ Error processing your message: {e}") # Sidebar Information st.sidebar.title("📌 About") st.sidebar.markdown( """ The **Smart Waste Management System** aims to: - 🏡 **Improve waste collection efficiency** for citizens. - 🚛 **Help municipal workers** manage schedules. - 🔄 **Assist recycling companies** in waste processing. - ⚡ **Support biogas plants** in energy production. 💡 **Need Help?** Use the chat to ask questions! """ )