import streamlit as st import pandas as pd from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt # Page configuration st.set_page_config(page_title="Crime Rate Prediction", layout="wide") st.title("📊 Crime Rate Prediction Based on Past Data") # CSV path (ensure the file is accessible or uploaded in cloud deployment) csv_path = "https://huggingface.co/spaces/MLDeveloper/crime_rate_predicition/resolve/main/RS_Session_255_AS_116.1%20(2).csv" try: # Load dataset df = pd.read_csv(csv_path) st.subheader("📄 Raw Dataset") st.dataframe(df) # Preprocessing data = df[[ 'State/UT', 'Number of Cases Registered - 2018-19', 'Number of Cases Registered - 2019-20', 'Number of Cases Registered - 2020-21', 'Number of Cases Registered - 2021-22 (up to 31.10.2021)' ]].copy() data.columns = ['State/UT', '2018', '2019', '2020', '2021'] # Convert to numeric for col in ['2018', '2019', '2020', '2021']: data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int) # Sidebar input st.sidebar.header("🔍 Predict Future Crime") selected_state = st.sidebar.selectbox("Select a State/UT", data['State/UT'].unique()) start_year = st.sidebar.slider("Select a year to predict", 2022, 2027, 2022) # Filter and train model selected_row = data[data['State/UT'] == selected_state].iloc[0] years = [2018, 2019, 2020, 2021] X_train = pd.DataFrame({'Year': years}) y_train = selected_row[['2018', '2019', '2020', '2021']].values model = LinearRegression() model.fit(X_train, y_train) # Predict future crime rates future_years = list(range(2022, 2028)) predictions = model.predict(pd.DataFrame({'Year': future_years})) result_df = pd.DataFrame({ 'Year': future_years, 'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions] }) # Display single year result selected_year_prediction = result_df[result_df['Year'] == start_year]['Predicted Crime Cases'].values[0] st.success(f"📌 **Predicted Crime Rate in {selected_state} for the year {start_year}: {selected_year_prediction} cases**") # Show full table st.subheader(f"📈 Predicted Crime Rate in {selected_state} (2022–2027)") st.dataframe(result_df) # Line chart fig, ax = plt.subplots() ax.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='teal') ax.set_xlabel("Year") ax.set_ylabel("Predicted Crime Cases") ax.set_title(f"Crime Trend Prediction for {selected_state}") st.pyplot(fig) except FileNotFoundError: st.error(f"❌ File not found at path: {csv_path}. Please check the path.") except Exception as e: st.error(f"⚠️ An error occurred: {e}")