MLDeveloper commited on
Commit
483b677
·
verified ·
1 Parent(s): b65fa3f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -40
app.py CHANGED
@@ -3,21 +3,16 @@ import pandas as pd
3
  from sklearn.linear_model import LinearRegression
4
  import matplotlib.pyplot as plt
5
 
6
- # Page config
7
- st.set_page_config(page_title="Crime Rate Prediction", layout="wide")
8
- st.title("📊 Crime Rate Prediction Based on Past Data")
9
 
10
- # CSV path (Make sure this file is uploaded in Streamlit cloud if deployed)
11
- csv_path = "crime_data.csv"
12
 
13
  try:
14
- # Load the dataset
15
  df = pd.read_csv(csv_path)
16
-
17
- st.subheader("📄 Raw Dataset")
18
- st.dataframe(df)
19
-
20
- # Preprocess
21
  data = df[[
22
  'State/UT',
23
  'Number of Cases Registered - 2018-19',
@@ -26,44 +21,51 @@ try:
26
  'Number of Cases Registered - 2021-22 (up to 31.10.2021)'
27
  ]].copy()
28
  data.columns = ['State/UT', '2018', '2019', '2020', '2021']
29
-
30
- # Convert string numbers to integers (if needed)
31
  for col in ['2018', '2019', '2020', '2021']:
32
  data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int)
33
 
34
- # Sidebar for user input
35
- st.sidebar.header("🔍 Predict Future Crime")
36
- selected_state = st.sidebar.selectbox("Select a State/UT", data['State/UT'].unique())
37
- start_year = st.sidebar.slider("Select starting year for prediction", 2022, 2026, 2022)
 
 
 
 
38
 
39
- # Perform prediction for selected state
40
- selected_row = data[data['State/UT'] == selected_state].iloc[0]
41
- years = [2018, 2019, 2020, 2021]
42
- X_train = pd.DataFrame({'Year': years})
43
- y_train = selected_row[['2018', '2019', '2020', '2021']].values
44
 
45
- model = LinearRegression()
46
- model.fit(X_train, y_train)
 
47
 
48
- future_years = list(range(start_year, 2028))
49
- predictions = model.predict(pd.DataFrame({'Year': future_years}))
50
 
51
- # Prepare result DataFrame
52
- result_df = pd.DataFrame({
53
- 'Year': future_years,
54
- 'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions]
55
- })
56
 
57
- st.subheader(f"📈 Predicted Crime Rate in {selected_state} ({start_year}–2027)")
58
- st.dataframe(result_df)
 
59
 
60
- # Plotting
61
- fig2, ax2 = plt.subplots()
62
- ax2.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='teal')
63
- ax2.set_xlabel("Year")
64
- ax2.set_ylabel("Predicted Crime Cases")
65
- ax2.set_title(f"Crime Trend Prediction for {selected_state}")
66
- st.pyplot(fig2)
 
 
 
 
67
 
68
  except FileNotFoundError:
69
  st.error(f"❌ File not found at path: {csv_path}. Please check the path.")
 
3
  from sklearn.linear_model import LinearRegression
4
  import matplotlib.pyplot as plt
5
 
6
+ # Page configuration
7
+ st.set_page_config(page_title="Crime Rate Predictor", layout="centered")
8
+ st.title("🔮 Crime Rate Prediction for Indian States/UTs")
9
 
10
+ # CSV path (Hosted online)
11
+ csv_path = "https://huggingface.co/spaces/MLDeveloper/crime_rate_predicition/resolve/main/RS_Session_255_AS_116.1%20(2).csv"
12
 
13
  try:
14
+ # Load and preprocess data
15
  df = pd.read_csv(csv_path)
 
 
 
 
 
16
  data = df[[
17
  'State/UT',
18
  'Number of Cases Registered - 2018-19',
 
21
  'Number of Cases Registered - 2021-22 (up to 31.10.2021)'
22
  ]].copy()
23
  data.columns = ['State/UT', '2018', '2019', '2020', '2021']
 
 
24
  for col in ['2018', '2019', '2020', '2021']:
25
  data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int)
26
 
27
+ # --- User Inputs ---
28
+ st.subheader("📝 Enter Details to Predict Future Crime Rates")
29
+
30
+ # Dropdown for State selection
31
+ state_input = st.selectbox("Select State/UT", sorted(data['State/UT'].unique()))
32
+
33
+ # Slider for year selection
34
+ year_input = st.slider("Select Starting Year", 2022, 2026, 2022)
35
 
36
+ if state_input:
37
+ if state_input in data['State/UT'].values:
38
+ selected_row = data[data['State/UT'] == state_input].iloc[0]
39
+ X_train = pd.DataFrame({'Year': [2018, 2019, 2020, 2021]})
40
+ y_train = selected_row[['2018', '2019', '2020', '2021']].values
41
 
42
+ # Train model and predict
43
+ model = LinearRegression()
44
+ model.fit(X_train, y_train)
45
 
46
+ future_years = list(range(year_input, 2028))
47
+ predictions = model.predict(pd.DataFrame({'Year': future_years}))
48
 
49
+ result_df = pd.DataFrame({
50
+ 'Year': future_years,
51
+ 'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions]
52
+ })
 
53
 
54
+ # Show predictions
55
+ st.subheader(f"📈 Predicted Crime Rate for {state_input} ({year_input} to 2027)")
56
+ st.dataframe(result_df, use_container_width=True)
57
 
58
+ # Plot
59
+ fig, ax = plt.subplots()
60
+ ax.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='orangered')
61
+ ax.set_xlabel("Year")
62
+ ax.set_ylabel("Predicted Crime Cases")
63
+ ax.set_title(f"{state_input} Crime Rate Prediction")
64
+ st.pyplot(fig)
65
+ else:
66
+ st.warning("⚠️ Please enter a valid State/UT name from the dataset.")
67
+ else:
68
+ st.info("👈 Please enter a State/UT name to begin prediction.")
69
 
70
  except FileNotFoundError:
71
  st.error(f"❌ File not found at path: {csv_path}. Please check the path.")