Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,48 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
|
4 |
-
import
|
|
|
5 |
|
6 |
# Page configuration
|
7 |
-
st.set_page_config(page_title="
|
8 |
-
st.title("
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
if
|
37 |
-
|
38 |
-
selected_row = data[data['State/UT'] == state_input].iloc[0]
|
39 |
-
X_train = pd.DataFrame({'Year': [2018, 2019, 2020, 2021]})
|
40 |
-
y_train = selected_row[['2018', '2019', '2020', '2021']].values
|
41 |
-
|
42 |
-
# Train model and predict
|
43 |
-
model = LinearRegression()
|
44 |
-
model.fit(X_train, y_train)
|
45 |
-
|
46 |
-
future_years = list(range(year_input, 2028))
|
47 |
-
predictions = model.predict(pd.DataFrame({'Year': future_years}))
|
48 |
-
|
49 |
-
result_df = pd.DataFrame({
|
50 |
-
'Year': future_years,
|
51 |
-
'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions]
|
52 |
-
})
|
53 |
-
|
54 |
-
# Show predictions
|
55 |
-
st.subheader(f"📈 Predicted Crime Rate for {state_input} ({year_input} to 2027)")
|
56 |
-
st.dataframe(result_df, use_container_width=True)
|
57 |
-
|
58 |
-
# Plot
|
59 |
-
fig, ax = plt.subplots()
|
60 |
-
ax.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='orangered')
|
61 |
-
ax.set_xlabel("Year")
|
62 |
-
ax.set_ylabel("Predicted Crime Cases")
|
63 |
-
ax.set_title(f"{state_input} Crime Rate Prediction")
|
64 |
-
st.pyplot(fig)
|
65 |
-
else:
|
66 |
-
st.warning("⚠️ Please enter a valid State/UT name from the dataset.")
|
67 |
else:
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import joblib
|
4 |
+
import re
|
5 |
+
import string
|
6 |
|
7 |
# Page configuration
|
8 |
+
st.set_page_config(page_title="SMS Spam Detector", layout="centered")
|
9 |
+
st.title("📩 SMS Spam Detection App")
|
10 |
+
st.markdown("🔍 Enter a message below to check if it's **Spam** or **Not Spam (Ham)**")
|
11 |
+
|
12 |
+
# --- Load Model and Vectorizer ---
|
13 |
+
model = joblib.load("model/spam_model.pkl") # Make sure path is correct
|
14 |
+
vectorizer = joblib.load("model/tfidf_vectorizer.pkl") # Adjust as per your folder
|
15 |
+
|
16 |
+
# --- Text Cleaning Function ---
|
17 |
+
def clean_text(text):
|
18 |
+
text = text.lower()
|
19 |
+
text = re.sub(r"http\S+|www\S+|https\S+", '', text, flags=re.MULTILINE)
|
20 |
+
text = re.sub(r'\@w+|\#','', text)
|
21 |
+
text = re.sub(r'[^\w\s]', '', text)
|
22 |
+
text = re.sub(r'\d+', '', text)
|
23 |
+
text = text.translate(str.maketrans('', '', string.punctuation))
|
24 |
+
return text.strip()
|
25 |
+
|
26 |
+
# --- Prediction Function ---
|
27 |
+
def predict_spam(message):
|
28 |
+
cleaned = clean_text(message)
|
29 |
+
vector = vectorizer.transform([cleaned])
|
30 |
+
prediction = model.predict(vector)
|
31 |
+
return "Spam" if prediction[0] == 1 else "Not Spam"
|
32 |
+
|
33 |
+
# --- Input Section ---
|
34 |
+
user_input = st.text_area("✉️ Enter your SMS message here:")
|
35 |
+
|
36 |
+
if st.button("Check Message"):
|
37 |
+
if user_input.strip() == "":
|
38 |
+
st.warning("⚠️ Please enter a valid message.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
else:
|
40 |
+
result = predict_spam(user_input)
|
41 |
+
if result == "Spam":
|
42 |
+
st.error("🚫 This message is classified as **SPAM**.")
|
43 |
+
else:
|
44 |
+
st.success("✅ This message is classified as **NOT SPAM (HAM)**.")
|
45 |
|
46 |
+
# Footer
|
47 |
+
st.markdown("---")
|
48 |
+
st.markdown("🔒 **Note**: This is a demo model and not intended for production use without proper testing.")
|