Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,71 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
import numpy as np
|
3 |
from sklearn.linear_model import LinearRegression
|
|
|
|
|
4 |
|
5 |
-
# Streamlit
|
6 |
st.set_page_config(page_title="BigMart Sales Predictor", page_icon="🛒", layout="centered")
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
|
|
12 |
product_name = st.text_input("📦 Product Name")
|
13 |
-
item_weight = st.number_input("⚖️ Item Weight (
|
14 |
item_visibility = st.slider("👀 Item Visibility", 0.0, 1.0, 0.05)
|
15 |
item_mrp = st.number_input("💰 Item MRP", min_value=0.0, step=1.0)
|
16 |
|
17 |
-
#
|
18 |
if st.button("Predict Sales"):
|
19 |
if not product_name:
|
20 |
st.warning("Please enter a product name.")
|
21 |
else:
|
22 |
-
# Dummy training data for demo
|
23 |
-
X_train = np.array([
|
24 |
-
[9.3, 0.016, 249.8],
|
25 |
-
[5.92, 0.019, 48.27],
|
26 |
-
[17.5, 0.016, 141.62],
|
27 |
-
[19.2, 0.0075, 182.095],
|
28 |
-
])
|
29 |
-
y_train = np.array([3735.14, 443.42, 2233.6, 3612.47]) # Target: Item_Outlet_Sales
|
30 |
-
|
31 |
-
# Train model
|
32 |
-
model = LinearRegression()
|
33 |
-
model.fit(X_train, y_train)
|
34 |
-
|
35 |
-
# Prepare user input
|
36 |
user_input = np.array([[item_weight, item_visibility, item_mrp]])
|
37 |
predicted_sales = model.predict(user_input)[0]
|
38 |
-
|
39 |
st.success(f"📈 Predicted Sales for '{product_name}': ₹{predicted_sales:,.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
|
|
|
|
42 |
st.sidebar.title("📌 About")
|
43 |
-
st.sidebar.markdown(
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
🔧 Replace with a trained model on BigMart dataset for real-world use!
|
48 |
-
"""
|
49 |
-
)
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
import numpy as np
|
4 |
from sklearn.linear_model import LinearRegression
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.preprocessing import LabelEncoder
|
7 |
|
8 |
+
# Streamlit UI
|
9 |
st.set_page_config(page_title="BigMart Sales Predictor", page_icon="🛒", layout="centered")
|
10 |
+
st.title("🛒 BigMart Sales Prediction using Real Dataset")
|
11 |
+
st.markdown("Fill in the product details to get a sales prediction.")
|
12 |
|
13 |
+
# Load and preprocess dataset
|
14 |
+
@st.cache_data
|
15 |
+
def load_data():
|
16 |
+
data = pd.read_csv("Train.csv") # 👈 Make sure Train.csv is in the same directory
|
17 |
+
# Handle missing values
|
18 |
+
data.fillna(data.mean(numeric_only=True), inplace=True)
|
19 |
+
data.fillna("Unknown", inplace=True)
|
20 |
+
|
21 |
+
# Encode categorical columns
|
22 |
+
label_enc = LabelEncoder()
|
23 |
+
for col in ['Item_Fat_Content', 'Item_Type', 'Outlet_Identifier', 'Outlet_Size', 'Outlet_Location_Type', 'Outlet_Type']:
|
24 |
+
data[col] = label_enc.fit_transform(data[col])
|
25 |
+
return data
|
26 |
+
|
27 |
+
df = load_data()
|
28 |
+
|
29 |
+
# Select features and target
|
30 |
+
features = ['Item_Weight', 'Item_Visibility', 'Item_MRP']
|
31 |
+
target = 'Item_Outlet_Sales'
|
32 |
+
|
33 |
+
X = df[features]
|
34 |
+
y = df[target]
|
35 |
|
36 |
+
# Train model
|
37 |
+
model = LinearRegression()
|
38 |
+
model.fit(X, y)
|
39 |
+
|
40 |
+
# Input UI
|
41 |
product_name = st.text_input("📦 Product Name")
|
42 |
+
item_weight = st.number_input("⚖️ Item Weight (kg)", min_value=0.0, step=0.1)
|
43 |
item_visibility = st.slider("👀 Item Visibility", 0.0, 1.0, 0.05)
|
44 |
item_mrp = st.number_input("💰 Item MRP", min_value=0.0, step=1.0)
|
45 |
|
46 |
+
# Prediction
|
47 |
if st.button("Predict Sales"):
|
48 |
if not product_name:
|
49 |
st.warning("Please enter a product name.")
|
50 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
user_input = np.array([[item_weight, item_visibility, item_mrp]])
|
52 |
predicted_sales = model.predict(user_input)[0]
|
|
|
53 |
st.success(f"📈 Predicted Sales for '{product_name}': ₹{predicted_sales:,.2f}")
|
54 |
+
|
55 |
+
# Optional: Download Prediction
|
56 |
+
result_df = pd.DataFrame({
|
57 |
+
"Product Name": [product_name],
|
58 |
+
"Item Weight": [item_weight],
|
59 |
+
"Item Visibility": [item_visibility],
|
60 |
+
"Item MRP": [item_mrp],
|
61 |
+
"Predicted Sales": [predicted_sales]
|
62 |
+
})
|
63 |
|
64 |
+
st.download_button("📥 Download Result as CSV", result_df.to_csv(index=False), file_name="prediction.csv", mime="text/csv")
|
65 |
+
|
66 |
+
# Sidebar Info
|
67 |
st.sidebar.title("📌 About")
|
68 |
+
st.sidebar.markdown("""
|
69 |
+
This app uses a **real BigMart dataset** from Kaggle and a **Linear Regression model** to predict sales.
|
70 |
+
You can customize features or switch to advanced ML models later!
|
71 |
+
""")
|
|
|
|
|
|