MLDeveloper commited on
Commit
0897c41
·
verified ·
1 Parent(s): 6dd2291

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -33
app.py CHANGED
@@ -1,24 +1,23 @@
1
  import streamlit as st
2
  import pandas as pd
3
  from sklearn.linear_model import LinearRegression
4
-
5
 
6
  # Page config
7
  st.set_page_config(page_title="Crime Rate Prediction", layout="wide")
8
  st.title("📊 Crime Rate Prediction Based on Past Data")
9
 
10
- # Replace this with your actual dataset path
11
- csv_path = "https://huggingface.co/spaces/MLDeveloper/crime_rate_predicition/resolve/main/RS_Session_255_AS_116.1%20(2).csv" # Example: "data/crime_data.csv" if inside a folder
12
 
13
- # Load data
14
  try:
 
15
  df = pd.read_csv(csv_path)
16
 
17
- # Display raw data
18
  st.subheader("📄 Raw Dataset")
19
  st.dataframe(df)
20
 
21
- # Extract the relevant columns
22
  data = df[[
23
  'State/UT',
24
  'Number of Cases Registered - 2018-19',
@@ -26,41 +25,45 @@ try:
26
  'Number of Cases Registered - 2020-21',
27
  'Number of Cases Registered - 2021-22 (up to 31.10.2021)'
28
  ]].copy()
29
-
30
- # Rename for easier access
31
  data.columns = ['State/UT', '2018', '2019', '2020', '2021']
32
 
33
- # Model training & prediction
34
- years = ['2018', '2019', '2020', '2021']
35
- future_year = '2022'
 
 
 
 
 
36
 
37
- X = pd.DataFrame({'Year': [2018, 2019, 2020, 2021]})
38
- predicted_values = []
 
 
 
39
 
40
- for i, row in data.iterrows():
41
- y = row[years].values
42
- model = LinearRegression()
43
- model.fit(X, y)
44
- pred = model.predict([[2022]])[0]
45
- predicted_values.append(max(0, int(pred))) # Avoid negatives
46
 
47
- data['Predicted 2022'] = predicted_values
 
48
 
49
- # Display result
50
- st.subheader("📈 Predicted Crime Rate for 2022")
51
- st.dataframe(data[['State/UT', 'Predicted 2022']].sort_values(by='Predicted 2022', ascending=False))
 
 
52
 
53
- # Plot top 10 states
54
- st.subheader("🔝 Top 10 States by Predicted Crime Rate")
55
- top10 = data.sort_values(by='Predicted 2022', ascending=False).head(10)
56
 
57
- fig, ax = plt.subplots()
58
- ax.barh(top10['State/UT'], top10['Predicted 2022'], color='salmon')
59
- ax.set_xlabel("Predicted Cases")
60
- ax.set_ylabel("State/UT")
61
- ax.invert_yaxis()
62
- ax.set_title("Top 10 States with Highest Predicted Crime Rate (2022)")
63
- st.pyplot(fig)
64
 
65
  except FileNotFoundError:
66
  st.error(f"❌ File not found at path: {csv_path}. Please check the path.")
 
1
  import streamlit as st
2
  import pandas as pd
3
  from sklearn.linear_model import LinearRegression
4
+ import matplotlib.pyplot as plt
5
 
6
  # Page config
7
  st.set_page_config(page_title="Crime Rate Prediction", layout="wide")
8
  st.title("📊 Crime Rate Prediction Based on Past Data")
9
 
10
+ # CSV path (Make sure this file is uploaded in Streamlit cloud if deployed)
11
+ csv_path = "crime_data.csv"
12
 
 
13
  try:
14
+ # Load the dataset
15
  df = pd.read_csv(csv_path)
16
 
 
17
  st.subheader("📄 Raw Dataset")
18
  st.dataframe(df)
19
 
20
+ # Preprocess
21
  data = df[[
22
  'State/UT',
23
  'Number of Cases Registered - 2018-19',
 
25
  'Number of Cases Registered - 2020-21',
26
  'Number of Cases Registered - 2021-22 (up to 31.10.2021)'
27
  ]].copy()
 
 
28
  data.columns = ['State/UT', '2018', '2019', '2020', '2021']
29
 
30
+ # Convert string numbers to integers (if needed)
31
+ for col in ['2018', '2019', '2020', '2021']:
32
+ data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int)
33
+
34
+ # Sidebar for user input
35
+ st.sidebar.header("🔍 Predict Future Crime")
36
+ selected_state = st.sidebar.selectbox("Select a State/UT", data['State/UT'].unique())
37
+ start_year = st.sidebar.slider("Select starting year for prediction", 2022, 2026, 2022)
38
 
39
+ # Perform prediction for selected state
40
+ selected_row = data[data['State/UT'] == selected_state].iloc[0]
41
+ years = [2018, 2019, 2020, 2021]
42
+ X_train = pd.DataFrame({'Year': years})
43
+ y_train = selected_row[['2018', '2019', '2020', '2021']].values
44
 
45
+ model = LinearRegression()
46
+ model.fit(X_train, y_train)
 
 
 
 
47
 
48
+ future_years = list(range(start_year, 2028))
49
+ predictions = model.predict(pd.DataFrame({'Year': future_years}))
50
 
51
+ # Prepare result DataFrame
52
+ result_df = pd.DataFrame({
53
+ 'Year': future_years,
54
+ 'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions]
55
+ })
56
 
57
+ st.subheader(f"📈 Predicted Crime Rate in {selected_state} ({start_year}–2027)")
58
+ st.dataframe(result_df)
 
59
 
60
+ # Plotting
61
+ fig2, ax2 = plt.subplots()
62
+ ax2.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='teal')
63
+ ax2.set_xlabel("Year")
64
+ ax2.set_ylabel("Predicted Crime Cases")
65
+ ax2.set_title(f"Crime Trend Prediction for {selected_state}")
66
+ st.pyplot(fig2)
67
 
68
  except FileNotFoundError:
69
  st.error(f"❌ File not found at path: {csv_path}. Please check the path.")