MLDeveloper's picture
Upload 3 files
8f460b5 verified
raw
history blame
3.31 kB
import os
import streamlit as st
from dotenv import load_dotenv
import google.generativeai as gen_ai
# Load environment variables
load_dotenv()
# Configure Streamlit page settings
st.set_page_config(
page_title="Smart Waste Management System",
page_icon=":recycle:", # Favicon emoji
layout="centered", # Page layout option
)
# Retrieve the Google API key from the environment
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# Check if the API key is loaded
if not GOOGLE_API_KEY:
st.error("API key not found! Please set the GOOGLE_API_KEY in your .env file.")
st.stop()
# Configure the Generative AI model
try:
gen_ai.configure(api_key=GOOGLE_API_KEY)
model = gen_ai.GenerativeModel("gemini-pro")
except Exception as e:
st.error(f"Error initializing the Gemini-Pro model: {e}")
st.stop()
# Function to translate roles between Gemini-Pro and Streamlit terminology
def translate_role_for_streamlit(user_role):
return "assistant" if user_role == "model" else user_role
# Initialize the chat session if not already present in session state
if "chat_session" not in st.session_state:
try:
st.session_state.chat_session = model.start_chat(history=[])
except Exception as e:
st.error(f"Error initializing chat session: {e}")
st.stop()
# Display the app's title
st.title("♻️ Smart Waste Management System")
# Introduction and instructions
st.markdown(
"""
Welcome to the Smart Waste Management System! This tool helps citizens, municipal workers,
recycling companies, and biogas plants collaborate efficiently for effective waste management.
**Key Features:**
- **Citizen Role:** Report waste collection issues and track garbage pickup.
- **Municipal Workers:** Manage schedules and coordinate garbage segregation.
- **Recycling Companies:** View and respond to requests for plastic waste.
- **Biogas Plants:** Manage bio-waste for energy production.
"""
)
# Input fields for user role and message
user_role = st.selectbox("Select Your Role:", ["Citizen", "Municipal Worker", "Recycling Company", "Biogas Plant"])
user_prompt = st.chat_input(f"[{user_role}] Enter your query or task...")
if user_prompt:
# Add the user's message to the chat and display it
st.chat_message("user").markdown(f"**{user_role}:** {user_prompt}")
# Customize the prompt based on the user role
role_specific_prompt = (
f"You are assisting a {user_role} in a waste management system. The user says: {user_prompt}"
)
# Send the prompt to Gemini-Pro and get the response
try:
gemini_response = st.session_state.chat_session.send_message(role_specific_prompt)
# Display Gemini-Pro's response
with st.chat_message("assistant"):
st.markdown(gemini_response.text)
except Exception as e:
st.error(f"Error processing your message: {e}")
# Add a sidebar for additional information
st.sidebar.title("About")
st.sidebar.markdown(
"""
The **Smart Waste Management System** aims to:
- Promote efficient segregation and recycling of waste.
- Facilitate collaboration between stakeholders.
- Reduce environmental impact and enhance sustainability.
**Need Help?** Use the chat to ask questions or provide feedback.
"""
)