MLDeveloper's picture
Update app.py
b65fa3f verified
raw
history blame
2.45 kB
import streamlit as st
import pandas as pd
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
# Page config
st.set_page_config(page_title="Crime Rate Prediction", layout="wide")
st.title("📊 Crime Rate Prediction Based on Past Data")
# CSV path (Make sure this file is uploaded in Streamlit cloud if deployed)
csv_path = "crime_data.csv"
try:
# Load the dataset
df = pd.read_csv(csv_path)
st.subheader("📄 Raw Dataset")
st.dataframe(df)
# Preprocess
data = df[[
'State/UT',
'Number of Cases Registered - 2018-19',
'Number of Cases Registered - 2019-20',
'Number of Cases Registered - 2020-21',
'Number of Cases Registered - 2021-22 (up to 31.10.2021)'
]].copy()
data.columns = ['State/UT', '2018', '2019', '2020', '2021']
# Convert string numbers to integers (if needed)
for col in ['2018', '2019', '2020', '2021']:
data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int)
# Sidebar for user input
st.sidebar.header("🔍 Predict Future Crime")
selected_state = st.sidebar.selectbox("Select a State/UT", data['State/UT'].unique())
start_year = st.sidebar.slider("Select starting year for prediction", 2022, 2026, 2022)
# Perform prediction for selected state
selected_row = data[data['State/UT'] == selected_state].iloc[0]
years = [2018, 2019, 2020, 2021]
X_train = pd.DataFrame({'Year': years})
y_train = selected_row[['2018', '2019', '2020', '2021']].values
model = LinearRegression()
model.fit(X_train, y_train)
future_years = list(range(start_year, 2028))
predictions = model.predict(pd.DataFrame({'Year': future_years}))
# Prepare result DataFrame
result_df = pd.DataFrame({
'Year': future_years,
'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions]
})
st.subheader(f"📈 Predicted Crime Rate in {selected_state} ({start_year}–2027)")
st.dataframe(result_df)
# Plotting
fig2, ax2 = plt.subplots()
ax2.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='teal')
ax2.set_xlabel("Year")
ax2.set_ylabel("Predicted Crime Cases")
ax2.set_title(f"Crime Trend Prediction for {selected_state}")
st.pyplot(fig2)
except FileNotFoundError:
st.error(f"❌ File not found at path: {csv_path}. Please check the path.")