Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from sklearn.linear_model import LinearRegression | |
import matplotlib.pyplot as plt | |
# Page config | |
st.set_page_config(page_title="Crime Rate Prediction", layout="wide") | |
st.title("📊 Crime Rate Prediction Based on Past Data") | |
# CSV path (Make sure this file is uploaded in Streamlit cloud if deployed) | |
csv_path = "crime_data.csv" | |
try: | |
# Load the dataset | |
df = pd.read_csv(csv_path) | |
st.subheader("📄 Raw Dataset") | |
st.dataframe(df) | |
# Preprocess | |
data = df[[ | |
'State/UT', | |
'Number of Cases Registered - 2018-19', | |
'Number of Cases Registered - 2019-20', | |
'Number of Cases Registered - 2020-21', | |
'Number of Cases Registered - 2021-22 (up to 31.10.2021)' | |
]].copy() | |
data.columns = ['State/UT', '2018', '2019', '2020', '2021'] | |
# Convert string numbers to integers (if needed) | |
for col in ['2018', '2019', '2020', '2021']: | |
data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int) | |
# Sidebar for user input | |
st.sidebar.header("🔍 Predict Future Crime") | |
selected_state = st.sidebar.selectbox("Select a State/UT", data['State/UT'].unique()) | |
start_year = st.sidebar.slider("Select starting year for prediction", 2022, 2026, 2022) | |
# Perform prediction for selected state | |
selected_row = data[data['State/UT'] == selected_state].iloc[0] | |
years = [2018, 2019, 2020, 2021] | |
X_train = pd.DataFrame({'Year': years}) | |
y_train = selected_row[['2018', '2019', '2020', '2021']].values | |
model = LinearRegression() | |
model.fit(X_train, y_train) | |
future_years = list(range(start_year, 2028)) | |
predictions = model.predict(pd.DataFrame({'Year': future_years})) | |
# Prepare result DataFrame | |
result_df = pd.DataFrame({ | |
'Year': future_years, | |
'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions] | |
}) | |
st.subheader(f"📈 Predicted Crime Rate in {selected_state} ({start_year}–2027)") | |
st.dataframe(result_df) | |
# Plotting | |
fig2, ax2 = plt.subplots() | |
ax2.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='teal') | |
ax2.set_xlabel("Year") | |
ax2.set_ylabel("Predicted Crime Cases") | |
ax2.set_title(f"Crime Trend Prediction for {selected_state}") | |
st.pyplot(fig2) | |
except FileNotFoundError: | |
st.error(f"❌ File not found at path: {csv_path}. Please check the path.") | |