Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
from sklearn.linear_model import LinearRegression | |
# Streamlit page config | |
st.set_page_config(page_title="BigMart Sales Predictor", page_icon="🛒", layout="centered") | |
st.title("🛒 BigMart Sales Prediction") | |
st.markdown("Enter item details below to predict sales:") | |
# Input fields | |
project_name = st.text_input("📦 Project Name") | |
item_weight = st.number_input("⚖️ Item Weight (kg)", min_value=0.0, step=0.1) | |
item_visibility = st.slider("👀 Item Visibility", 0.0, 1.0, 0.1) | |
item_mrp = st.number_input("💰 Item MRP (Max Retail Price)", min_value=0.0, step=1.0) | |
# Predict button | |
if st.button("Predict Sales"): | |
if not project_name: | |
st.warning("Please enter a project name.") | |
else: | |
# Dummy ML Model: Replace with your actual trained model | |
X_train = np.array([ | |
[9.3, 0.016, 249.8], | |
[5.92, 0.019, 48.27], | |
[17.5, 0.016, 141.62], | |
[19.2, 0.0075, 182.095], | |
]) | |
y_train = np.array([3735.14, 443.42, 2233.6, 3612.47]) # example sales | |
model = LinearRegression() | |
model.fit(X_train, y_train) | |
# Prepare input | |
user_input = np.array([[item_weight, item_visibility, item_mrp]]) | |
prediction = model.predict(user_input)[0] | |
st.success(f"📈 Predicted Sales for '{project_name}': ₹{prediction:,.2f}") | |
# Sidebar info | |
st.sidebar.title("📌 About") | |
st.sidebar.markdown( | |
""" | |
This app uses a simple ML model to estimate sales based on: | |
- Item weight | |
- Item visibility | |
- Item MRP | |
Replace with a trained BigMart dataset model for production use. | |
""" | |
) | |