import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import openai # Load the solar data CSV file df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv') # Set up the openai API key (replace with your actual OpenAI API key) openai.api_key = 'your_openai.api_key_here' # Streamlit UI st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered") st.title("AI-based Solar Project Estimation Tool") # Center all input widgets st.write("### Enter Your Details Below:") with st.form("solar_form"): # Get the list of unique states from the dataset state_options = df['State'].dropna().unique() # Input widgets location = st.selectbox("Select your State", options=sorted(state_options)) roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1) electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0) submitted = st.form_submit_button("Get Estimate") if submitted and location and roof_size > 0 and electricity_bill >= 0: # Fetch state data from the dataset state_data = df[df['State'].str.contains(location, case=False)].iloc[0] # Get the first match if state_data is not None: ghi = state_data['Avg_GHI (kWh/m²/day)'] solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)'] # Use LLM to generate solar project estimate (cost, savings, payback period) prompt = f""" Estimate the solar system for the location '{location}' based on the following details: Roof size: {roof_size} sq meters Monthly electricity bill: ₹{electricity_bill} Average GHI (solar radiation) for {location}: {ghi} kWh/m²/day Solar system cost per kW in {location}: ₹{solar_cost_per_kw} Provide: 1. Estimated solar system size in kW 2. Estimated daily solar output in kWh 3. Total system cost in ₹ 4. Monthly savings in ₹ 5. Payback period in years """ # Get response from OpenAI API response = openai.Completion.create( engine="gpt-4", # You can change this to another GPT model if needed prompt=prompt, max_tokens=250, n=1, stop=None, temperature=0.7, ) # Extract the result result = response.choices[0].text.strip() # Display the response from the model st.subheader("Estimated Solar System Details:") st.write(result) else: st.error("Sorry, the location entered does not match any available data.") else: st.warning("Please fill out all fields to see your solar project estimate.")