import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import openai import streamlit as st import pandas as pd import requests # Load the solar data CSV file df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv') # Set up the Gemini API key (replace with your actual Gemini API key) GEMINI_API_KEY = 'AIzaSyAGGP8I7c0YmA8xKZsEdAF9AF3ElaPoEn4' # Set the API endpoint for Gemini GEMINI_API_URL = "https://gemini.googleapis.com/v1/completions" # Example URL, please check the actual URL # Streamlit UI st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered") st.title("AI-based Solar Project Estimation Tool") # Center all input widgets st.write("### Enter Your Details Below:") with st.form("solar_form"): # Get the list of unique states from the dataset state_options = df['State'].dropna().unique() # Input widgets location = st.selectbox("Select your State", options=sorted(state_options)) roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1) electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0) submitted = st.form_submit_button("Get Estimate") if submitted and location and roof_size > 0 and electricity_bill >= 0: # Fetch state data from the dataset state_data = df[df['State'].str.contains(location, case=False)].iloc[0] # Get the first match if state_data is not None: ghi = state_data['Avg_GHI (kWh/m²/day)'] solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)'] # Use Gemini API to generate solar project estimate (cost, savings, payback period) prompt = f""" Estimate the solar system for the location '{location}' based on the following details: Roof size: {roof_size} sq meters Monthly electricity bill: ₹{electricity_bill} Average GHI (solar radiation) for {location}: {ghi} kWh/m²/day Solar system cost per kW in {location}: ₹{solar_cost_per_kw} Provide: 1. Estimated solar system size in kW 2. Estimated daily solar output in kWh 3. Total system cost in ₹ 4. Monthly savings in ₹ 5. Payback period in years """ # Request to Gemini API (Adjust headers and body according to Gemini API documentation) response = requests.post( GEMINI_API_URL, headers={ "Authorization": f"Bearer {GEMINI_API_KEY}", "Content-Type": "application/json" }, json={ "model": "gemini-model-xyz", # Use the actual Gemini model name "prompt": prompt, "max_tokens": 250, "temperature": 0.7, "top_p": 1.0, "n": 1 } ) # Check for successful response if response.status_code == 200: result = response.json().get("choices", [])[0].get("text", "").strip() # Display the response from the Gemini model st.subheader("Estimated Solar System Details:") st.write(result) else: st.error(f"Error: {response.status_code}. Unable to get response from Gemini API.") else: st.error("Sorry, the location entered does not match any available data.") else: st.warning("Please fill out all fields to see your solar project estimate.")