import streamlit as st import pandas as pd import google.generativeai as genai import os from io import StringIO import csv from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() # Set page configuration first st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered") # Initialize Gemini with the API key loaded from the .env file api_key = os.getenv("GOOGLE_API_KEY") if api_key: genai.configure(api_key=api_key) else: st.error("API key is missing. Please set the GOOGLE_API_KEY environment variable.") model = genai.GenerativeModel("gemini-1.5-flash") # Load solar data @st.cache_data def load_data(): df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv') return df df = load_data() # UI - Form for user input st.title("AI-based Solar Project Estimation Tool") st.write("### Enter Your Details Below:") with st.form("solar_form"): state_options = df['State'].dropna().unique() location = st.selectbox("Select your State", options=sorted(state_options)) roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1) electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0) submitted = st.form_submit_button("Get Estimate") # Build the prompt for Gemini def build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw): prompt = f""" Estimate the solar system for the location '{location}' based on the following details: - Roof size: {roof_size} sq meters - Monthly electricity bill: ₹{electricity_bill} - Average GHI (solar radiation) for {location}: {ghi} kWh/m²/day - Solar system cost per kW in {location}: ₹{solar_cost_per_kw} Provide the following: 1. Estimated solar system size in kW 2. Estimated daily solar output in kWh 3. Total system cost in ₹ 4. Monthly savings in ₹ 5. Payback period in years """ return prompt # Generate the solar project estimate via Gemini if submitted and location and roof_size > 0 and electricity_bill >= 0: state_data = df[df['State'].str.contains(location, case=False)].iloc[0] if state_data is not None: ghi = state_data['Avg_GHI (kWh/m²/day)'] solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)'] prompt_text = build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw) # Call Gemini API once for all the batch generation with st.spinner("Generating solar estimate with Gemini..."): response = model.generate_content(prompt_text) # Display structured output st.subheader("Solar Project Estimate") # Break down the response into structured points estimated_data = response.text.strip().split("\n") for point in estimated_data: st.write(f"- {point}") else: st.error("Sorry, the location entered does not match any available data.") else: st.warning("Please fill out all fields to see your solar project estimate.") # Batch CSV Export st.markdown("### Export Solar Estimates") batch = st.number_input("How many estimates to generate?", min_value=1, max_value=100, value=5) if st.button("Generate Batch & Download CSV"): if location and roof_size > 0 and electricity_bill >= 0: csv_buffer = StringIO() writer = csv.writer(csv_buffer) writer.writerow(["Sequence_no", "Solar Estimate"]) # Call Gemini API once for the batch generation with st.spinner("Generating batch estimates..."): batch_prompts = [build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw) for _ in range(batch)] batch_responses = [model.generate_content(prompt) for prompt in batch_prompts] # Process the batch responses and write to CSV for i, response in enumerate(batch_responses, 1): writer.writerow([i, response.text.strip()]) st.download_button( label="Download Solar Estimates CSV", data=csv_buffer.getvalue(), file_name="solar_estimates.csv", mime="text/csv" ) else: st.warning("Please fill out all fields to generate batch estimates.")