Update app.py
Browse files
app.py
CHANGED
@@ -2,33 +2,31 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
-
import
|
6 |
-
|
7 |
-
import streamlit as st
|
8 |
-
import pandas as pd
|
9 |
import requests
|
|
|
10 |
|
11 |
-
# Load
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
|
20 |
# Streamlit UI
|
21 |
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered")
|
22 |
st.title("AI-based Solar Project Estimation Tool")
|
23 |
|
24 |
-
# Center all input widgets
|
25 |
st.write("### Enter Your Details Below:")
|
26 |
|
27 |
with st.form("solar_form"):
|
28 |
-
# Get the list of unique states from the dataset
|
29 |
state_options = df['State'].dropna().unique()
|
30 |
|
31 |
-
# Input widgets
|
32 |
location = st.selectbox("Select your State", options=sorted(state_options))
|
33 |
roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1)
|
34 |
electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0)
|
@@ -36,21 +34,19 @@ with st.form("solar_form"):
|
|
36 |
submitted = st.form_submit_button("Get Estimate")
|
37 |
|
38 |
if submitted and location and roof_size > 0 and electricity_bill >= 0:
|
39 |
-
|
40 |
-
state_data = df[df['State'].str.contains(location, case=False)].iloc[0] # Get the first match
|
41 |
|
42 |
if state_data is not None:
|
43 |
ghi = state_data['Avg_GHI (kWh/m²/day)']
|
44 |
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)']
|
45 |
|
46 |
-
|
47 |
-
prompt = f"""
|
48 |
Estimate the solar system for the location '{location}' based on the following details:
|
49 |
-
Roof size: {roof_size} sq meters
|
50 |
-
Monthly electricity bill: ₹{electricity_bill}
|
51 |
-
Average GHI (solar radiation) for {location}: {ghi} kWh/m²/day
|
52 |
-
Solar system cost per kW in {location}: ₹{solar_cost_per_kw}
|
53 |
-
|
54 |
Provide:
|
55 |
1. Estimated solar system size in kW
|
56 |
2. Estimated daily solar output in kWh
|
@@ -59,31 +55,33 @@ if submitted and location and roof_size > 0 and electricity_bill >= 0:
|
|
59 |
5. Payback period in years
|
60 |
"""
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
)
|
78 |
-
|
79 |
-
# Check
|
80 |
if response.status_code == 200:
|
81 |
-
result = response.json()
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
85 |
else:
|
86 |
-
st.error(f"Error: {response.status_code}
|
87 |
|
88 |
else:
|
89 |
st.error("Sorry, the location entered does not match any available data.")
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
+
import os
|
|
|
|
|
|
|
6 |
import requests
|
7 |
+
from dotenv import load_dotenv
|
8 |
|
9 |
+
# Load environment variables from .env file
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
# Get the Gemini API key from the environment
|
13 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
14 |
|
15 |
+
# Gemini API URL
|
16 |
+
GEMINI_API_URL = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent"
|
17 |
|
18 |
+
# Load the solar data CSV file
|
19 |
+
df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv')
|
20 |
|
21 |
# Streamlit UI
|
22 |
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered")
|
23 |
st.title("AI-based Solar Project Estimation Tool")
|
24 |
|
|
|
25 |
st.write("### Enter Your Details Below:")
|
26 |
|
27 |
with st.form("solar_form"):
|
|
|
28 |
state_options = df['State'].dropna().unique()
|
29 |
|
|
|
30 |
location = st.selectbox("Select your State", options=sorted(state_options))
|
31 |
roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1)
|
32 |
electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0)
|
|
|
34 |
submitted = st.form_submit_button("Get Estimate")
|
35 |
|
36 |
if submitted and location and roof_size > 0 and electricity_bill >= 0:
|
37 |
+
state_data = df[df['State'].str.contains(location, case=False)].iloc[0]
|
|
|
38 |
|
39 |
if state_data is not None:
|
40 |
ghi = state_data['Avg_GHI (kWh/m²/day)']
|
41 |
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)']
|
42 |
|
43 |
+
prompt_text = f"""
|
|
|
44 |
Estimate the solar system for the location '{location}' based on the following details:
|
45 |
+
- Roof size: {roof_size} sq meters
|
46 |
+
- Monthly electricity bill: ₹{electricity_bill}
|
47 |
+
- Average GHI (solar radiation) for {location}: {ghi} kWh/m²/day
|
48 |
+
- Solar system cost per kW in {location}: ₹{solar_cost_per_kw}
|
49 |
+
|
50 |
Provide:
|
51 |
1. Estimated solar system size in kW
|
52 |
2. Estimated daily solar output in kWh
|
|
|
55 |
5. Payback period in years
|
56 |
"""
|
57 |
|
58 |
+
# Define the headers for the API request
|
59 |
+
headers = {
|
60 |
+
"Authorization": f"Bearer {GEMINI_API_KEY}",
|
61 |
+
"Content-Type": "application/json"
|
62 |
+
}
|
63 |
+
|
64 |
+
# Define the request payload
|
65 |
+
payload = {
|
66 |
+
"model": "gemini-1.5-flash",
|
67 |
+
"messages": [{"role": "system", "content": "You are a helpful assistant."},
|
68 |
+
{"role": "user", "content": prompt_text}],
|
69 |
+
"temperature": 0.7
|
70 |
+
}
|
71 |
+
|
72 |
+
# Make the API request
|
73 |
+
response = requests.post(GEMINI_API_URL, json=payload, headers=headers)
|
74 |
+
|
75 |
+
# Check the response from the API
|
76 |
if response.status_code == 200:
|
77 |
+
result = response.json()
|
78 |
+
generated_content = result['choices'][0]['message']['content']
|
79 |
+
|
80 |
+
# Display the generated content (solar estimates)
|
81 |
+
st.subheader("Solar Project Estimate")
|
82 |
+
st.write(generated_content)
|
83 |
else:
|
84 |
+
st.error(f"Error: {response.status_code} - {response.text}")
|
85 |
|
86 |
else:
|
87 |
st.error("Sorry, the location entered does not match any available data.")
|