Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,18 @@ import numpy as np
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import openai
|
6 |
|
|
|
|
|
|
|
|
|
7 |
# Load the solar data CSV file
|
8 |
df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv')
|
9 |
|
10 |
-
# Set up the
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
# Streamlit UI
|
14 |
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered")
|
@@ -36,7 +43,7 @@ if submitted and location and roof_size > 0 and electricity_bill >= 0:
|
|
36 |
ghi = state_data['Avg_GHI (kWh/m²/day)']
|
37 |
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)']
|
38 |
|
39 |
-
# Use
|
40 |
prompt = f"""
|
41 |
Estimate the solar system for the location '{location}' based on the following details:
|
42 |
Roof size: {roof_size} sq meters
|
@@ -52,22 +59,31 @@ if submitted and location and roof_size > 0 and electricity_bill >= 0:
|
|
52 |
5. Payback period in years
|
53 |
"""
|
54 |
|
55 |
-
#
|
56 |
-
response =
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
)
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
71 |
|
72 |
else:
|
73 |
st.error("Sorry, the location entered does not match any available data.")
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import openai
|
6 |
|
7 |
+
import streamlit as st
|
8 |
+
import pandas as pd
|
9 |
+
import requests
|
10 |
+
|
11 |
# Load the solar data CSV file
|
12 |
df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv')
|
13 |
|
14 |
+
# Set up the Gemini API key (replace with your actual Gemini API key)
|
15 |
+
GEMINI_API_KEY = 'AIzaSyAGGP8I7c0YmA8xKZsEdAF9AF3ElaPoEn4'
|
16 |
+
|
17 |
+
# Set the API endpoint for Gemini
|
18 |
+
GEMINI_API_URL = "https://gemini.googleapis.com/v1/completions" # Example URL, please check the actual URL
|
19 |
|
20 |
# Streamlit UI
|
21 |
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered")
|
|
|
43 |
ghi = state_data['Avg_GHI (kWh/m²/day)']
|
44 |
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)']
|
45 |
|
46 |
+
# Use Gemini API to generate solar project estimate (cost, savings, payback period)
|
47 |
prompt = f"""
|
48 |
Estimate the solar system for the location '{location}' based on the following details:
|
49 |
Roof size: {roof_size} sq meters
|
|
|
59 |
5. Payback period in years
|
60 |
"""
|
61 |
|
62 |
+
# Request to Gemini API (Adjust headers and body according to Gemini API documentation)
|
63 |
+
response = requests.post(
|
64 |
+
GEMINI_API_URL,
|
65 |
+
headers={
|
66 |
+
"Authorization": f"Bearer {GEMINI_API_KEY}",
|
67 |
+
"Content-Type": "application/json"
|
68 |
+
},
|
69 |
+
json={
|
70 |
+
"model": "gemini-model-xyz", # Use the actual Gemini model name
|
71 |
+
"prompt": prompt,
|
72 |
+
"max_tokens": 250,
|
73 |
+
"temperature": 0.7,
|
74 |
+
"top_p": 1.0,
|
75 |
+
"n": 1
|
76 |
+
}
|
77 |
)
|
78 |
|
79 |
+
# Check for successful response
|
80 |
+
if response.status_code == 200:
|
81 |
+
result = response.json().get("choices", [])[0].get("text", "").strip()
|
82 |
+
# Display the response from the Gemini model
|
83 |
+
st.subheader("Estimated Solar System Details:")
|
84 |
+
st.write(result)
|
85 |
+
else:
|
86 |
+
st.error(f"Error: {response.status_code}. Unable to get response from Gemini API.")
|
87 |
|
88 |
else:
|
89 |
st.error("Sorry, the location entered does not match any available data.")
|