|
import streamlit as st |
|
import pandas as pd |
|
import google.generativeai as genai |
|
import os |
|
from io import StringIO |
|
import csv |
|
|
|
import streamlit as st |
|
import pandas as pd |
|
import google.generativeai as genai |
|
import os |
|
from io import StringIO |
|
import csv |
|
|
|
|
|
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered") |
|
|
|
|
|
api_key = os.getenv("GOOGLE_API_KEY") |
|
if not api_key: |
|
st.error("Google API Key not set. Please set the GOOGLE_API_KEY environment variable.") |
|
else: |
|
|
|
genai.configure(api_key=api_key) |
|
model = genai.GenerativeModel("gemini-1.5-flash") |
|
|
|
|
|
@st.cache_data |
|
def load_data(): |
|
df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv') |
|
return df |
|
|
|
df = load_data() |
|
|
|
|
|
st.title("AI-based Solar Project Estimation Tool") |
|
st.write("### Enter Your Details Below:") |
|
|
|
with st.form("solar_form"): |
|
state_options = df['State'].dropna().unique() |
|
|
|
location = st.selectbox("Select your State", options=sorted(state_options)) |
|
roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1) |
|
electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0) |
|
|
|
submitted = st.form_submit_button("Get Estimate") |
|
|
|
|
|
def build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw): |
|
prompt = f""" |
|
Estimate the solar system for the location '{location}' based on the following details: |
|
- Roof size: {roof_size} sq meters |
|
- Monthly electricity bill: ₹{electricity_bill} |
|
- Average GHI (solar radiation) for {location}: {ghi} kWh/m²/day |
|
- Solar system cost per kW in {location}: ₹{solar_cost_per_kw} |
|
Provide the following: |
|
1. Estimated solar system size in kW |
|
2. Estimated daily solar output in kWh |
|
3. Total system cost in ₹ |
|
4. Monthly savings in ₹ |
|
5. Payback period in years |
|
""" |
|
return prompt |
|
|
|
|
|
if submitted and location and roof_size > 0 and electricity_bill >= 0: |
|
state_data = df[df['State'].str.contains(location, case=False)].iloc[0] |
|
|
|
if state_data is not None: |
|
ghi = state_data['Avg_GHI (kWh/m²/day)'] |
|
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)'] |
|
|
|
prompt_text = build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw) |
|
|
|
|
|
with st.spinner("Generating solar estimate with Gemini..."): |
|
response = model.generate_content(prompt_text) |
|
|
|
|
|
st.subheader("Solar Project Estimate") |
|
|
|
|
|
estimated_data = response.text.strip().split("\n") |
|
for point in estimated_data: |
|
st.write(f"- {point}") |
|
else: |
|
st.error("Sorry, the location entered does not match any available data.") |
|
else: |
|
st.warning("Please fill out all fields to see your solar project estimate.") |
|
|
|
|
|
st.markdown("### Export Solar Estimates") |
|
batch = st.number_input("How many estimates to generate?", min_value=1, max_value=100, value=5) |
|
|
|
if st.button("Generate Batch & Download CSV"): |
|
if location and roof_size > 0 and electricity_bill >= 0: |
|
csv_buffer = StringIO() |
|
writer = csv.writer(csv_buffer) |
|
writer.writerow(["Sequence_no", "Solar Estimate"] ) |
|
|
|
|
|
with st.spinner("Generating batch estimates..."): |
|
batch_prompts = [build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw) for _ in range(batch)] |
|
batch_responses = [model.generate_content(prompt) for prompt in batch_prompts] |
|
|
|
|
|
for i, response in enumerate(batch_responses, 1): |
|
writer.writerow([i, response.text.strip()]) |
|
|
|
st.download_button( |
|
label="Download Solar Estimates CSV", |
|
data=csv_buffer.getvalue(), |
|
file_name="solar_estimates.csv", |
|
mime="text/csv" |
|
) |
|
else: |
|
st.warning("Please fill out all fields to generate batch estimates.") |
|
|
|
|
|
|